已知$a,b>0$且$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}$,求$\dfrac{1}{a-1}+\dfrac{4}{b-1}$的最小值.


解:令$m=\dfrac{1}{a},n=\dfrac{1}{b}$,则$m+n=\dfrac{2}{3}$
$\dfrac{1}{a-1}+\dfrac{4}{b-1}=\dfrac{m}{1-m}+\dfrac{4n}{1-n}=\dfrac{1}{1-m}+\dfrac{4}{1-n}-5\ge\dfrac{(1+2)^2}{2-m-n}-5=\dfrac{7}{4}$

练习1:
已知$a,b>0$且$\dfrac{1}{a}+\dfrac{1}{b}=2$,求$\dfrac{1}{a+1}+\dfrac{4}{b+1}$的最大值.

答案:$\dfrac{11}{4}$

练习2:

已知$a,b>0,a+2b=1$,则$\dfrac{1}{3a+4b}+\dfrac{1}{a+3b}$的最小值为_____

解答:令$3a+4b=x,a+3b=y$则$a=\dfrac{3x-4y}{5},b=\dfrac{3y-x}{5},x+2y=5$

故$\dfrac{1}{3a+4b}+\dfrac{1}{a+3b}=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}(\dfrac{1}{x}+\dfrac{1}{y})(x+2y)\ge\dfrac{3+2\sqrt{2}}{5}$

或者待定系数后利用柯西不等式得

$\dfrac{1}{3a+4b}+\dfrac{1}{a+3b}=\dfrac{1}{3a+4b}+\dfrac{2}{2(a+3b)}\ge\dfrac{(1+\sqrt{2})^2}{5a+10b}=\dfrac{3+2\sqrt{2}}{5}$

练习3:

$\dfrac{1}{(2a+b)b}+\dfrac{2}{(2b+a)a}=1$求$ab$的最大值

答案:2-$\dfrac{2\sqrt{2}}{3}$

提示:条件两边同乘$ab$齐次化后分母双代换.

MT【318】分式不等式双代换的更多相关文章

  1. 3-18 关于namespace,双冒号::的用法; SelfYield.

    关于namespace,双冒号::的用法. 防止引用多个模块在一个文件/类中,有重名的对象.::可以调用类的类方法,和常量. class Foo   BAR = "hello"   ...

  2. MT【324】增量代换

    实数$a,b,c$满足$a^2+b^2+c^2=1$求$f=\min\{(a-b)^2,(b-c)^2,(c-a)^2\}$的最大值 分析:由对称性不妨设$c\ge b\ge a$,令$b-a=s,c ...

  3. MT【298】双参数非齐次

    若函数$f(x)=x^2+(\dfrac{1}{3}+a)x+b$在$[-1,1]$上有零点,则$a^2-3b$的最小值为_____ 分析:设零点为$x_0$,则$b=-x^2_0-(\dfrac{1 ...

  4. MT【48】分式连加形式下求不等式解集的区间长度

    ] 评:此题有分析的味道在里面,用到了n次多项式的韦达定理,用到了零点存在定理以及代数基本定理:n次多项式在复数域上有n个根.

  5. 双积分式(A/D)转换器电路结构及工作原理

    1.转换方式 V-T型间接转换ADC. 2.  电路结构 图1是这种转换器的原理电路,它由积分器(由集成运放A组成).过零比较器(C).时钟脉冲控制门(G)和计数器(ff0-ffn)等几部分组成 图1 ...

  6. MT【230】一道代数不等式

    设$a,b,c>0,$满足$a+b+c\le abc$证明:$\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+ ...

  7. MT【57】2017联赛一试解答倒数第二题:一道不等式的最值

    注:康拓诺维奇不等式的应用

  8. MT【33】证明琴生不等式

    解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.

  9. MT【25】切线不等式原理及例题

    评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.

随机推荐

  1. Dynamics 365支持的语言(中文语言名/英文语言名)列表

    本人微信和易信公众号:微软动态CRM专家罗勇 ,回复277或者20180803可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong.me ...

  2. 2018年IOS/Android UI设计规范

    更多参考: 2017最新设计尺寸及规范 UI : 2018年IOS/Android UI设计规范 转载:https://www.jianshu.com/p/03e5cdd4ffd6

  3. 如何在WIN10内置Ubuntu中有多个terminal

    使用的是tmux来实现在WIN10的内置Ubuntu实现多终端窗口 先安装tmux:sudo apt-get install tumx 启动tmux,tmux 然后就可以在tmux中实现多窗口.其操作 ...

  4. C/C++ -- 插入排序算法

    索引: 目录索引 参看代码 GitHub: Sort.cpp 代码简要分析说明: 1.for(int i=1;i<nSize;i++) 这个外层的for循环, [0][1],[1][2],[2] ...

  5. MongoDB 基本操作和聚合操作

    一 . MongoDB 基本操作 基本操作可以简单分为查询.插入.更新.删除. 1 文档查询 作用 MySQL SQL  MongoDB  所有记录  SELECT * FROM users;  db ...

  6. bug管理工具之禅道的测试模块的使用

    https://www.cnblogs.com/evablogs/p/6785017.html 角色:产品经理PO,项目经理PM,开发,测试 测试任务: bug: 1.维护bug视图模块:[测试]-[ ...

  7. 【原】Java学习笔记019 - 面向对象

    package cn.temptation; public class Sample01 { public static void main(String[] args) { // 仔细想一想,Ani ...

  8. python3 判断数据类型

    def estType(): eventList = [1, 'Tom', {'name': 'Lucy', 'age': 16, 'grade': 98}] print(type(eventList ...

  9. mybatis使用oracle的nulls first/nulls last

    nulls first/nulls last 顾名思义,就是在检索结果集里,有null值的时候,把null值认为是最大值,还是最小值. nulls first 放置在结果集最前面 nulls last ...

  10. SpringBoot2.0之四 简单整合MyBatis

    从最开始的SSH(Struts+Spring+Hibernate),到后来的SMM(SpringMVC+Spring+MyBatis),到目前的S(SpringBoot),随着框架的不断更新换代,也为 ...