sklearn的kmeans测试
由于需要海量的进行聚类,所以将 k-means 算法自我封装成一个方便利用的库,可以直接调用得到最优的 k值 和 中心点:
#!/usr/bin/python3.4
# -*- coding: utf-8 -*-
# k-means算法
import numpy as np
from sklearn.cluster import KMeans
from sklearn import metrics
# sklearn官方文档
# http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
def calckmean(array, karr):
# array是一个二维数组
# X = X = [[1, 1], [2, 3], [3, 2], [1, 2], [5, 8], [6, 6], [5, 7], [5, 6], [6, 7], [7, 1], [8, 2], [9, 1], [7, 1], [9, 3]]
# k是待选取K值的数组
# karr = [2, 3, 4, 5, 8,...]
# 将原始数据由数组变成矩阵
x = np.array(array)
# 用来储存轮廓系数的数组
score = []
# 用来储存中心坐标点的数组
point = []
# 用来储存各个簇的坐标
coordinates = []
# 用来储存各个簇点的与中心的距离
distances = []
for k in karr:
# n_clusters为聚类的个数
# max_iter为迭代的次数,这里设置最大迭代次数为300
# n_init=10使用不同质心种子运行k-means算法的次数
kmeans_model = KMeans(n_clusters=k, max_iter=300,n_init=10).fit(x)
# title = 'K = %s, 轮廓系数 = %.03f' % (k, metrics.silhouette_score(X, kmeans_model.labels))
# print(title)
# 获取中心点的坐标
counter_point = kmeans_model.cluster_centers_
# print("k=" + str(k) + "时的中心点为" + "\n" + str(counter_point))
# 记录分数
# print(metrics.silhouette_score(x, kmeans_model.labels_,metric='euclidean'))
score.append("%.03f" % (metrics.silhouette_score(x, kmeans_model.labels_)))
# 记录中心坐标
point.append(counter_point)
# 将坐标属于哪个簇的标签储存到数组
# k = 3 : [0 0 0 0 2 2 2 2 2 1 1 1 1 1]
# k = 4 : [1 1 1 1 0 0 0 0 0 3 2 2 3 2]
coordinates.append(kmeans_model.labels_)
# 每个点和中心点的距离
distances.append(KMeans(n_clusters=k, max_iter=300).fit_transform(x))
# 返回轮廓系数最大的k值\中心坐标\分簇坐标
maxscore = max(score, default=0)
for i in range(0, len(score)):
if maxscore == score[i]:
# 储存分簇坐标的数组
coordinate = []
# 储存簇点与中心点的距离数组
distance = []
for j in range(0, len(point[i])):
# 这里是得到分簇坐标
tempcoor = []
for item in zip(coordinates[i], array):
if item[0] == j:
tempcoor.append(item[1])
coordinate.append(tempcoor)
# 得到的样式为k=3,每个簇点的坐标群
# [[[7, 1], [8, 2], [9, 1], [7, 1], [9, 3]],
# [[5, 8], [6, 6], [5, 7], [5, 6], [6, 7]],
# [[1, 1], [2, 3], [3, 2], [1, 2]]]
# 这里是得到分簇与中心点的距离
tempdis = []
for item in zip(coordinates[i], distances[i]):
if item[0] == j:
tempdis.append(min(item[1]))
distance.append(tempdis)
# 得到k=3的各个簇点对中心的距离
# [[1.1661903789690597, 0.39999999999999575, 1.166190378969066, 1.1661903789690597, 1.7204650534085277],
# [1.2649110640673495, 0.9999999999999858, 0.4472135954999452, 0.8944271909999063, 0.6324555320336579],
# [1.25, 1.0307764064044151, 1.25, 0.75]]
# 得到k=3的中心点
# [[8.0, 1.6],
# [5.4, 6.8],
# [1.75, 2.0]]
return karr[i], point[i], coordinate, distance
调用的时候直接可以:
from kmeans import *
测试数据:
#!/usr/bin/python3.4
# -*- coding: utf-8 -*-
from kmeans import *
x1 = np.array([1, 2, 3, 1, 5, 6, 5])
x2 = np.array([1, 3, 2, 2, 8, 6, 7])
# a = [[1, 2, 3, 1, 5, 6, 5], [1, 3, 2, 2, 8, 6, 7], [3, 5, 9, 4, 7, 6, 1], [1, 5, 3, 4, 8, 6, 7], [5, 1, 2, 3, 6, 9, 4],[8, 4, 6, 2, 1, 6, 3]]
a = [[1, 1], [2, 3], [3, 2], [1, 2], [5, 8], [6, 6], [5, 7], [5, 6], [6, 7], [7, 1], [8, 2], [9, 1], [7, 1], [9, 3]]
karr = [2, 3, 4, 5, 8]
# print(np.array(a))
# print(list(zip(x1, x2)))
K, point, coordinate, distance = calckmean(X, tests)
print("------------------------")
print("k=" + str(K) + "时的中心点为" + "\n" + str(point) + "\n" + "各个簇点为" + "\n" + str(coordinate))
print(distance)

源文件可以在我的github下载:
sklearn的kmeans测试的更多相关文章
- 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...
- 3. sklearn的K-Means的使用
1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 在机器学习中有几个重要的python学习 ...
- 利用sklearn实现k-means
基于上面的一篇博客k-means利用sklearn实现k-means #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np ...
- 【sklearn入门】通过sklearn实现k-means并可视化聚类结果
import numpy as np from sklearn.cluster import KMeans from mpl_toolkits.mplot3d import Axes3D import ...
- Mahout 0.10.1安装(Hadoop2.6.0)及Kmeans测试
1.版本和安装路径 Ubuntu 14.04 Mahout_Home=/opt/mahout-0.10.1 Hadoop_Home=/usr/local/hadoop Mavent_Home=/opt ...
- 第八次作业:聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
import numpy as np x = np.random.randint(1,100,[20,1]) y = np.zeros(20) k = 3 def initcenter(x,k): r ...
- K-means算法及文本聚类实践
K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果. 基本思想 k-means算法需要事先指定 ...
- 一步步教你轻松学K-means聚类算法
一步步教你轻松学K-means聚类算法(白宁超 2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...
- 1. K-Means原理解析
1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 我们在一开始的时候应该就说过,机器学习按 ...
随机推荐
- CocosCraetor中图像资源Texture和SpriteFrame的区别
Texture是保存在GPU缓冲中的一张纹理.是由一张图片创建获得的. SpriteFrame是Texture+Rect,根据一张纹理材质来剪切获得. SpriteFrame是Texture+Rect ...
- Linux 安装qt5-designer并集成到Pycharm
在前面,有过介绍 Pycharm集成pyrcc4 =====>链接: Pyqt 打包资源文件 这个是在Windows下集成,且pyqt在Windows下一个双击exe搞定. 在pyqt5之前 ...
- .Net Core小技巧 - Swagger适配虚拟目录及二级目录
前言 随着前后端分离模式与微服务架构的出现,Web API变得越来越重要及普遍.而后出现的网关技术,使开发者更倾向于使用二级/多级目录来暴露Web API,一是暴露的端口更少,方便管理:二是在网关中可 ...
- SeaJS之use方法
SeaJS 是一个js模块加载器.在 SeaJS 看来,一个文件就是一个模块.所有模块都遵循 CMD 规范 define(function(require, exports, module) { va ...
- 向mysql中导入向导时如表xlsx
如果出现这种问题那么是因为没有打开这个文件,如果想导入这个文件需要到开这个文件,然后再导入
- HTML 5将给开发者带来什么?
在新的时代里,相信网页技术会伴随HTML 5的来临进入大洗牌的局面,HTML 5旨在解决Web中的交互,媒体,本地操作等问题,一些浏览器已经尝试支持HTML 5的一些功能,而开发者们有望最终从那些We ...
- BZOJ5412 : circle
若仅保留这$k$个点仍然有环,那么显然无解. 否则设$A$表示这$k$个点的集合,$B$表示剩下的点的集合,因为是竞赛图,每个集合内部的拓扑关系是一条链,方便起见将所有点按照在所在集合的链上的位置进行 ...
- elasticsearch简单操作
现在,启动一个节点和kibana,接下来的一切操作都在kibana中Dev Tools下的Console里完成 创建一篇文档 将小黑的小姨妈的个人信息录入elasticsearch.我们只要输入 PU ...
- URI is not registered ( Setting | Project Settings | Schemas and DTDs )
URI is not registered ( Setting | Project Settings | Schemas and DTDs ) 在idea中,当初手动第一次写spring配置文件的时候 ...
- vbs脚本实现自动打字祝福&搞笑
脚本祝福礼物 概述 听说抖音上流行一种用代码做程序表白的东西,,,, 当然我也不是要表白,,,, 但是好像蛮有意思的,,,, 于是,又学了一下vbs脚本,做了几个很不错的祝福脚本,不懂代码的可以直接戳 ...