题目链接 Clever - Y

 

题意

 有同余方程 \(X^Y \equiv K\ (mod\ Z)\),给定\(X\),\(Z\),\(K\),求\(Y\)。

解法

 如题,是拓展 \(Bsgs\) 板子,部分学习内容在这里 \((Click\ here)\)

 

 敲完板子就能获得至少 5 倍经验。

 

 过程中疯狂 \(WA\) 所以总结需要注意的几点……

 

  · 令 \(m = sqrt(p) + 1\) 比较保险,不然有的时候会枚举不到

  · 在令 \(a\),\(p\) 互质的循环中,\(b = d\) 时及时返回是有必要的

  · 同时在以上步骤中,\((a, p)\) 可能恒不等于\(1\),所以也要判

  · \(map\) 慢的一批!慢的一批!手写个效率有保证的类似哈希表的东西

类似的题目

 [Hdu 2815] Mod Tree

 [Poj 2417] Discrete Logging

 [CQOI2018] 破解D-H协议

 代码……

 

#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long u64; class Hash_table {
private:
vector<u64> value;
vector<pair<u64, u64> > funcn;
public:
inline void clear() { value.clear(), funcn.clear(); } inline void sortv() { sort(value.begin(), value.end()); } inline void push(u64 x, u64 p) { value.push_back(x), funcn.push_back(make_pair(x, p)); } inline bool find(u64 x) {
int k = lower_bound(value.begin(), value.end(), x) - value.begin();
return (k != value.size()) && (value[k] == x);
} inline int posi(u64 x) {
for(int i = 0; i < funcn.size(); ++i)
if( funcn[i].first == x ) return funcn[i].second;
}
} lg; inline u64 Fast_pow(u64 x, u64 p, u64 m) {
u64 ans = 1;
if( p < 0 ) return ans;
for( ; p; x = x * x % m, p = p >> 1) if( p & 1 ) ans = x * ans % m;
return ans;
} inline u64 Ex_gcd(u64 a, u64 b, u64 &x, u64 &y) {
if( !b ) { x = 1, y = 0; return a; }
u64 d = Ex_gcd(b, a % b, y, x); y = y - a / b * x;
return d;
} inline u64 Gcd(u64 a, u64 b) { return !b ? a : Gcd(b, a % b); } inline u64 Inverse(u64 a, u64 p) {
u64 x = 0, y = 0, g = Ex_gcd(a, p, x, y);
return g == 1 ? (x + p) % p : -1ll;
} inline u64 Solve_fun(u64 a, u64 b, u64 p) {
u64 g = Gcd(a, p), inv = 1, x = 0, y = 0;
if( b % g ) return -1ll;
a = a / g, b = b / g, p = p / g;
inv = Inverse(b, p), a = a * inv % p, b = 1;
Ex_gcd(a, p, x, y), x = (x + p) % p;
return ~inv ? x : -1ll;
} inline u64 Ex_bsgs(u64 a, u64 b, u64 p) {
u64 m = 1, d = 1, num = 0, base = 1, pow_a = 1, ans = -1;
for(u64 g = Gcd(a, p); g != 1ll; g = Gcd(a, p), ++num) {
if( num > 31 || b % g ) return -1ll;
b = b / g, p = p / g, d = d * (a / g) % p;
if( b == d ) return num + 1;
}
m = sqrt(p) + 1, base = Fast_pow(a, m, p), lg.clear(), lg.push(1ll, 0ll);
for(u64 i = 1; i <= m + num; ++i) pow_a = pow_a * a % p, lg.push(pow_a, i);
lg.sortv();
for(u64 tmp, i = 0; i <= m; ++i) {
tmp = Solve_fun(d % p, b, p), d = d * base % p;
if( ~tmp && lg.find(tmp) ) { ans = i * m + lg.posi(tmp) + num; break; }
}
return ans;
} int main(int argc, const char *argv[])
{
u64 a = 0, b = 0, p = 0, ans = 0;
while( ~scanf("%lld%lld%lld", &a, &p, &b) ) if( p ) {
ans = Ex_bsgs(a, b, p);
~ans ? printf("%lld\n", ans) : printf("No Solution\n");
}
return 0;
}

 

 —— 我们还会继续与人萍水相逢,为了新的别离。

[拓展Bsgs] Clever - Y的更多相关文章

  1. 【POJ 3243】Clever Y 拓展BSGS

    调了一周,我真制杖,,, 各种初始化没有设为1,,,我当时到底在想什么??? 拓展BSGS,这是zky学长讲课的课件截屏: 是不是简单易懂.PS:聪哥说“拓展BSGS是偏题,省选不会考,信我没错”,那 ...

  2. bzoj 1467: Pku3243 clever Y 扩展BSGS

    1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 小 ...

  3. poj3243 Clever Y[扩展BSGS]

    Clever Y Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8666   Accepted: 2155 Descript ...

  4. luogu2485 [SDOI2011]计算器 poj3243 Clever Y BSGS算法

    BSGS 算法,即 Baby Step,Giant Step 算法.拔山盖世算法. 计算 \(a^x \equiv b \pmod p\). \(p\)为质数时 特判掉 \(a,p\) 不互质的情况. ...

  5. 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

    什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...

  6. 【SPOJ】Power Modulo Inverted(拓展BSGS)

    [SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #inc ...

  7. bzoj1467 Pku3243 clever Y

    1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 313  Solved: 181[Submit][Status ...

  8. 数学:拓展BSGS

    当C不是素数的时候,之前介绍的BSGS就行不通了,需要用到拓展BSGS算法 方法转自https://blog.csdn.net/zzkksunboy/article/details/73162229 ...

  9. 【BZOJ1467/2480】Pku3243 clever Y/Spoj3105 Mod EXBSGS

    [BZOJ1467/2480]Pku3243 clever Y/Spoj3105 Mod Description 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. Input      ...

随机推荐

  1. 宇宙第一开发工具:vs2019 开发Python

    1.初步认识 现在人工智能逐步进入人们的视野,人工智能开发也越来越火. 而python语言,被作为大数据库开发的首选语言之一~.前一段时间vs2019预览版发布.相信不少小伙伴已经开始使用,vs201 ...

  2. Java https ssl证书导入删除

    下载并命名 例如命名github.cer 放进jre的lib\security下 keytool -delete [OPTION]... 选项: -alias <alias> 要处理的条目 ...

  3. nginx内置变量总结

    nginx内置变量 2019-02-28 变量名称 变量用途 $atg_PARAMETER      客户端GET请求中   PARAMETER字段的值                        ...

  4. koa 中间件

    什么是 Koa 的中间件 通俗的讲:中间件就是匹配路由之前或者匹配路由完成做的一系列的操作,我们就可以 把它叫做中间件. 在express中间件(Middleware)是一个函数,它可以访问请求对象( ...

  5. Linux后台命令的使用说明

    1)ctrl+Z:停止当前进程 首先先将一个程序运行起来,这个时候如果你需要去干别的事情,需要暂停运行,可以使用ctrl+Z: user@mine:/opt/user/pytorch-gender$ ...

  6. Docker Selenium

    SeleniumHQ官方项目:https://github.com/seleniumHQ/docker-selenium 项目目前快速迭代中. Docker 一般叫docker容器,一个可爱的鲸鱼,上 ...

  7. android9.0系统适配遇到的问题

    一.apk在9.0以下的系统上安装运行,没有问题.但是在9.0系统上运行会弹出一个框 解决办法: private void closeAndroidPDialog() { try { Class aC ...

  8. 基于 HTML5 结合互联网+ 的 3D 隧道

    前言 目前,物资采购和人力成本是隧道业发展的两大瓶颈.比如依靠民间借贷,融资成本很高:采购价格不透明,没有增值税发票:还有项目管控和供应链管理的问题.成本在不断上升,利润在不断下降,隧道产业的“互联网 ...

  9. 基于微服务的DevOps落地指南 交付效率提升40%

    基于微服务的DevOps落地指南 交付效率提升40% 2015-2016年,珍爱线下门店已新增覆盖城市9个,与此同时,CRM系统大小故障却发生了数十起... ... 珍爱网是以“网络征选+人工红娘”模 ...

  10. Git—推送代码至Github

    Git—上传代码至Github 首先得有个Github的账户,然后创建一个库. 然后找到指向改库的URL 第一次上传需要设置用户邮箱,打开git安装文件/bin下面找到git.bash并打开,设置全局 ...