不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma\mu_0}\lap {\bf H},\\ \Div{\bf H}&=0,\\ \cfrac{\rd {\bf u}}{\rd t}+\n \sex{p+\cfrac{1}{2}\mu_0H^2} &=\mu_0({\bf H}\cdot\n){\bf H}+\bar \mu \lap{\bf u}+{\bf F},\\ \Div{\bf u}&={\bf 0}.  \eea \eeex$$

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. DeveloperGuide Hive UDAF

    Writing GenericUDAFs: A Tutorial User-Defined Aggregation Functions (UDAFs) are an excellent way to ...

  2. element 关闭弹窗时清空表单信息

    关闭弹窗时清空表单信息: // 弹框关闭时清空信息 closeDialog () { this.$nextTick(() => { this.$refs['createModelForm'].c ...

  3. SQL CREATE DATABASE 语句

    CREATE DATABASE 语句 CREATE DATABASE 用于创建数据库. SQL CREATE DATABASE 语法 CREATE DATABASE database_name SQL ...

  4. Linux-基础学习(一)-基本命令

    开始今日份整理 1.Linux的文件目录操作 1.1 ls 简述:ls是list的缩写,用于列出指定目录或文件 常用的选项 1 -a:显示所有档案及目录(ls内定将档案名或目录名称为“.”的视为隐藏, ...

  5. Java 前后端List传值

    js代码 function click(){ var arrays = new Array(); for (var i = 0; i < arr.length; i++) { arrays.pu ...

  6. springBoot中使用定时任务

    简单示例 导入依赖 springBoot已经默认集成了定时任务的依赖,只需要引入基本的依赖就可以使用定时任务. <parent> <groupId>org.springfram ...

  7. Entity Framework Core系列之实战(ASP.NET Core MVC应用程序)

    本示例演示在ASP.NET 应用程序中使用EF CORE创建数据库并对其做基本的增删改查操作.当然我们默认你的机器上已经安装了.NET CORE SDK以及合适的IDE.本例使用的是Visual St ...

  8. FAST MONTE CARLO ALGORITHMS FOR MATRICES II (快速的矩阵分解策略)

    目录 问题 算法 LINEARTIMESVD 算法 CONSTANTTIMESVD 算法 理论 算法1的理论 算法2 的理论 代码 Drineas P, Kannan R, Mahoney M W, ...

  9. echarts报表显示%+没有0

    function showTablegroup(page) { var series; $.ajax({ type:'post', url:"<%=basePath%>flowA ...

  10. win10设置操作备忘

    添加密码, 更改密码: Win键-->左侧用户图标-->更改帐户设置-->登陆选项-->添加密码 | 更改密码