不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma\mu_0}\lap {\bf H},\\ \Div{\bf H}&=0,\\ \cfrac{\rd {\bf u}}{\rd t}+\n \sex{p+\cfrac{1}{2}\mu_0H^2} &=\mu_0({\bf H}\cdot\n){\bf H}+\bar \mu \lap{\bf u}+{\bf F},\\ \Div{\bf u}&={\bf 0}.  \eea \eeex$$

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. Python简单多进程demo

    ''' 多线程使用场景: 怎样用Python的多线程提高效率? io操作不占用CPU 计算操作占用CPU Python多线程不适合CPU操作密集型的任务,适合io操作密集型的任务 如果有CPU操作密集 ...

  2. How To Size Your Apache Flink® Cluster: A Back-of-the-Envelope Calculation

    January 11, 2018- Apache Flink Robert Metzger and Chris Ward A favorite session from Flink Forward B ...

  3. Jenkins之Job建立-运行本地脚本

    新建一个自由风格的项目,运行本地脚本 1.点击菜单栏中的“新任务” 2.进入该页面后输入一个项目名称,然后选择“构建一个自由风格的软件项目”,滑动到最底端,点击ok(在左下角) 3.进入下图页面后 “ ...

  4. C++笔记--thread pool【转】

    版权声明:转载著名出处 https://blog.csdn.net/gcola007/article/details/78750220 背景 刚粗略看完一遍c++ primer第五版,一直在找一些c+ ...

  5. 记一次Maven编译IKAnalyzer失败及解决办法

    下载了一个开源项目,maven形式组织的,其中有一个依赖包是IKAnalyzer. 由于mvnrepository中不存在IKAnalyzer的坐标,因此该依赖包需要自己下载安装到本地maven仓库才 ...

  6. 深入剖析Redis系列:Redis数据结构与全局命令概述

    前言 Redis 提供了 5 种数据结构.理解每种数据结构的特点,对于 Redis 的 开发运维 非常重要,同时掌握 Redis 的 单线程命令处理 机制,会使 数据结构 和 命令 的选择事半功倍. ...

  7. linux 下一些命令

    1. 后台执行命令 nohup  http://blog.csdn.net/liuyanfeier/article/details/62422742 2. 查看日志文件 格式:tailf logfil ...

  8. Python——控件事件

    鼠标 键盘 窗口 按钮

  9. Codechef April Challenge 2019 Division 2

    Maximum Remaining 题意:给n个数,取出两个数$a_{i}$,$a_{j}$,求$a_{i}\% a_{j}$取模的最大值 直接排个序,第二大(严格的第二大)模第一大就是答案了. #i ...

  10. Cut 'em all! CodeForces - 982C(贪心dfs)

    K - Cut 'em all! CodeForces - 982C 给一棵树 求最多能切几条边使剩下的子树都有偶数个节点 如果n是奇数 那么奇数=偶数+奇数 不管怎么切 都会有奇数 直接打印-1 贪 ...