设 $f(x)$ 在 $\bbR$ 上连续, 又 $$\bex \phi(x)=f(x)\int_0^x f(t)\rd t \eex$$ 单调递减. 证明: $f\equiv 0$.

证明: 设 $$\bex g(x)=\cfrac{\sez{\int_0^x f(t)\rd t}^2}{2}, \eex$$ 则 $g'(x)=\phi(x)$ 递减, 而 $$\bex g'(x)\sedd{\ba{ll} \geq g'(0)=0,&x<0,\\ \leq g'(0)=0,&x>0; \ea} \eex$$ 进一步, $$\bex g(x)\sedd{\ba{ll} \leq g(0)=0,&x<0,\\ \leq g(0)=0,&x>0. \ea} \eex$$ 如此, $g(x)\leq 0$, $$\bex \int_0^x f(t)\rd t=0,\quad \forall\ x, \eex$$ $$\bex f(x)=\sez{\int_0^x f(t)\rd t}'=0,\quad \forall\ x. \eex$$

[再寄小读者之数学篇](2014-06-22 函数恒为零的一个充分条件 [中国科学技术大学2011年高等数学B考研试题])的更多相关文章

  1. [再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])

    设数列 $\sed{x_n}$ 满足 $0<x_1<\pi$, $x_{n+1}=\sin x_n\ (n=1,2,\cdots)$. (1) 证明 $\dps{\vlm{n}x_n}$ ...

  2. [再寄小读者之数学篇](2014-06-22 不等式 [中国科学技术大学2011年高等数学B考研试题])

    证明不等式: $$\bex 1+x\ln\sex{x+\sqrt{1+x^2}}>\sqrt{1+x^2},\quad x>0. \eex$$ 证明: 令 $x=\tan t,\ 0< ...

  3. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  4. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  5. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  6. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  7. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  8. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  9. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

随机推荐

  1. 推荐六款炫酷的HTML5效果插件

    1. HTML5 3D图片阴影翻转动画 效果很酷 分享一款很酷的HTML5 3D动画特效,这款3D特效可以为你的图片增加阴影的效果,而且可以让图片在鼠标滑过的时候出现3D翻转的动画效果.这和HTML5 ...

  2. topjui中combobox使用

    1.创建combobox的方法 常用的一种是通过Js定义,一种是通过在input输入框中定义,还有一种通过在selete标签中定义,可以去看easyui的官方文档 http://www.jeasyui ...

  3. CSS--字体|垂直居中|background

    一,字体的设置 二,垂直居中 2.1,单行文本垂直居中 2.2,多行文本垂直居中 2.3,绝对定位元素垂直居中 三.颜色的表示法 四.background ---------------------- ...

  4. RabbitMQ广播:direct模式

    一. 消息的广播需要exchange:exchange是一个转发器,其实把消息发给RabbitMQ里的exchange fanout: 所有bind到此exchange的queue都可以接收消息,广播 ...

  5. 【Python 22】52周存钱挑战2.0(列表list和math函数)

    1.案例描述 按照52周存钱法,存钱人必须在一年52周内,每周递存10元.例如,第一周存10元,第二周存20元,第三周存30元,直到第52周存520元. 记录52周后能存多少钱?即10+20+30+. ...

  6. 【Python 14】分形树绘制2.0(重复五角星+Turtle库文档)

    1.案例描述 加入循环操作绘制重复不同大小的图形 2.案例分析 3.turtle库补充 # 画笔控制函数 turtle.penup() # 抬起画笔,之后移动画笔不绘制图形 turtle.pendow ...

  7. JAVA—枚举(Enum)学习总结

    1.枚举(Enumeration) 枚举(The Enumeration)接口定义了一种从数据结构中取回连续元素的方式.这种传统接口已被迭代器取代,虽然Enumeration 还未被遗弃,但在现代代码 ...

  8. Linux内存管理 (13)回收页面

    专题:Linux内存管理专题 关键词:LRU.活跃/不活跃-文件缓存/匿名页面.Refault Distance. 页面回收.或者回收页面也即page reclaim,依赖于LRU链表对页面进行分类: ...

  9. 判断语句之if...else

    判断语句之if...else if语句第二种格式: if...else: 格式: 执行流程 首先判断关系表达式看其结果是true还是false 如果是true就执行语句体1 如果是false就执行语句 ...

  10. Yesterday when I was young

    Somehow, it seems the love I knew was always the most destructive kind 不知为何,我经历的爱情总是最具毁灭性的的那种 Yester ...