关键词:sar、sadc、ksar、/proc/stat、/proc/cpuinfo、/proc/meminfo、/proc/diskstats。

在之前有简单介绍过sar/ksar,最近在使用中感觉需要再深入了解一下。

ksar/sar从内核采集数据,并输出可读性数据。分析相关源码,有助于知道数据来龙去脉。--------------------------------------1. sar源码概览

ksar显示sar/sadc获取的数据,并图形化显示。数据从内核节点,到sadc/sar转换,再到ksar显示。----------------------------2. ksar处理流程

对照ksar每张图表,然后sar/sadc对应的采集转换,再到内核每个数据项含义解析。--------------------------------------------3. ksar解读

期望是从ksar上的图表能对应到内核的代码,明白这些图表数据根源。

1. sar源码概览

sar作为sysstat一部分,相关的工具还包括sadc、sa1、sa2。

sa1负责收集并存储每天系统动态信息到一个二进制的文件中,sa1是sadc所涉及的程序前端程序。通常由计划任务工具cron来调用。打开sa1文件不难看出就是调用sadc今次那个采集数据。

sa2就是调用sar命令,将当日二进制日志文件数据存储到文本文件中。

sadc是系统动态数据收集工具,收集的数据被写入一个二进制文件中,它是sar工具后端。

sar负责解析sadc保存的数据,并显示出来。

当使用sar进行数据统计的时候,通过pstree `pidof sar`,可以看出sar调用了sadc。

sar───sadc

1.1 sadc信息采样

sadc入口在sadc.c中,主要是解析参数、启动一个interval alarm、rw_sa_stat_loop()读取数据。

通过alarm触发SIGALRM实现周期性读取,SIGINT停止读取。

int main(int argc, char **argv)
{
int opt = ;
char ofile[MAX_FILE_LEN], sa_dir[MAX_FILE_LEN];
int stdfd = , ofd = -;
int restart_mark;
long count = ; /* Get HZ */
get_HZ(); /* Compute page shift in kB */
get_kb_shift(); ofile[] = sa_dir[] = comment[] = '\0'; ...-----------------------------------------------------------解析参数并进行配置。 /* Set a handler for SIGALRM */
memset(&alrm_act, , sizeof(alrm_act));
alrm_act.sa_handler = alarm_handler;
sigaction(SIGALRM, &alrm_act, NULL);
alarm(interval);------------------------------------------启动一个alarm,超时未interval,并通过在alarm_handler()中重新起一个alarm实现周期性处理。 /* Main loop */rw_sa_stat_loop(count, stdfd, ofd, ofile, sa_dir); #ifdef HAVE_SENSORS
/* Cleanup sensors */
sensors_cleanup();
#endif /* HAVE_SENSORS */ /* Free structures */
sa_sys_free(); return ;
}

rw_sa_stat_loop()是整个sadc的核心循环,这里从个sysfs读取信息,并提取关键信息,然后保存。

void rw_sa_stat_loop(long count, int stdfd, int ofd, char ofile[],
char sa_dir[])
{
int do_sa_rotat = ;
unsigned int save_flags;
char new_ofile[MAX_FILE_LEN] = "";
struct tm rectime = {, , , , , , , , , , NULL}; /* Set a handler for SIGINT */
memset(&int_act, , sizeof(int_act));
int_act.sa_handler = int_handler;
sigaction(SIGINT, &int_act, NULL);
/* Main loop */
do { reset_stats();
...
/* Read then write stats */
read_stats();--------------------------------------------------------遍历act[]中所有的struct activity,进行采样。 if (stdfd >= ) {
save_flags = flags;
flags &= ~S_F_LOCK_FILE;
write_stats(stdfd);----------------------------------------------通过标准输出文件打印信息。
flags = save_flags;
} /* If the record type was R_LAST_STATS, tag it R_STATS before writing it */
record_hdr.record_type = R_STATS;
if (ofile[]) {
write_stats(ofd);------------------------------------------------将结果写到指定文件中。
}
...
fflush(stdout); if (count > ) {
count--;
} if (count) {
/* Wait for a signal (probably SIGALRM or SIGINT) */
pause();----------------------------------------------------------此处和alarm()配合达到周期性采样的效果。
} if (sigint_caught)----------------------------------------------------如果收到SIGINT信号,提前终止采样。
/* SIGINT caught: Stop now */
break;
...
}
while (count);------------------------------------------------------------达到总采样数,同样停止采样。 /* Close file descriptors if they have actually been used */
CLOSE(stdfd);
CLOSE(ofd);
}

read_stats()是核心采集数据函数,核心数据结构式act[]。

void read_stats(void)
{
int i;
__nr_t cpu_nr = act[get_activity_position(act, A_CPU, EXIT_IF_NOT_FOUND)]->nr; record_hdr.uptime0 = ;
if (cpu_nr > ) {
read_uptime(&(record_hdr.uptime0));
} for (i = ; i < NR_ACT; i++) {
if (IS_COLLECTED(act[i]->options)) {---------------------------------------遍历所有act[],如果act[]中对应的options包含AO_COLLECTED则进行f_read()。
/* Read statistics for current activity */ (*act[i]->f_read)(act[i]);
}
} if (cpu_nr == ) {
record_hdr.uptime0 = record_hdr.uptime;
}
}

act[]存放了所有统计事件的struct activity。

struct activity *act[NR_ACT] = {
&cpu_act,
&pcsw_act,
&irq_act,
&swap_act,
&paging_act,
&io_act,
&memory_act,
&huge_act,
&ktables_act,
&queue_act,
&serial_act,
&disk_act,
/* <network> */
&net_dev_act,
&net_edev_act,
&net_nfs_act,
&net_nfsd_act,
&net_sock_act,
&net_ip_act,
&net_eip_act,
&net_icmp_act,
&net_eicmp_act,
&net_tcp_act,
&net_etcp_act,
&net_udp_act,
&net_sock6_act,
&net_ip6_act,
&net_eip6_act,
&net_icmp6_act,
&net_eicmp6_act,
&net_udp6_act,
&fchost_act,
&softnet_act, /* AO_CLOSE_MARKUP */
/* </network> */
/* <power-management> */
&pwr_cpufreq_act,
&pwr_fan_act,
&pwr_temp_act,
&pwr_in_act,
&pwr_wghfreq_act,
&pwr_usb_act, /* AO_CLOSE_MARKUP */
/* </power-management> */
&filesystem_act
};

1.2 sar显示统计信息

read_sadc_stat_bunch()读取统计信息,write_stats()调用每个struct activity的f_print()函数,write_stats_avg()调用每个struct activity的f_print_avg()函数。

f_print()和f_print_avg()或从文件中解析字符串,或启动sadc采样,然后再解析。

2 ksar处理流程

2.1 ksar介绍

ksar资源:ksar安装文件

ksar中看到的图标是结果,这些数据是通过sadc采集,sar解析出来的。

sadc是通过读取sysfs/procfs节点来获取信息,这些节点都是内核提供的统计信息。

sar -o temp.bin 1 600--------------------------------------------------sar将采样数据保存在temp.bin中。

LC_ALL=C sar -A -f temp.bin > sar.txt----------------------------将保存的采样数据temp.bin,转换成更可读性强的文本文件。

所以ksar的每一张图标,都对应了内核统计信息。

sar是数据搬运整理工具,ksar是图形化工具。

下面对每张图标从ksar,到sar/sadc,最终到内核中每个数据。

2.2 ksar操作

2.2.1 数据导入

通过Data->Append from a file...从txt中加载数据,还有其他两种数据来源方式。

2.2.2 数据导出

如果要将图表导出,可以在每张图标下面选择Export PNG之类。

或者通过Export->Export to PDF...,选择指定选项。

3. ksar解析

下面结合ksar图表来逐项解析。

3.1 CPU信息

cpu_act读取/proc/stat节点,解析其中cpu信息,包括合计cpu信息以及单个cpu信息。

/proc/stat中的信息包括一个合计以及多个cpu单独统计信息。

从/proc/stat中读取的信息都是从启动以来的累计时间,在图标中显示的是一个时间段的差值。

然后计算不同模块耗时占比。

void read_stat_cpu(struct stats_cpu *st_cpu, int nbr,
unsigned long long *uptime, unsigned long long *uptime0)
{
FILE *fp;
struct stats_cpu *st_cpu_i;
struct stats_cpu sc;
char line[];
int proc_nb; if ((fp = fopen(STAT, "r")) == NULL) {----------------------------------------------------/proc/stat
fprintf(stderr, _("Cannot open %s: %s\n"), STAT, strerror(errno));
exit();
} while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "cpu ", )) {------------------------------------------------------统计总cpu不同类别耗时,详细信息参考/proc/stat。这里的信息和内核中一一对应。
memset(st_cpu, , STATS_CPU_SIZE);
sscanf(line + , "%llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
&st_cpu->cpu_user,
&st_cpu->cpu_nice,
&st_cpu->cpu_sys,
&st_cpu->cpu_idle,
&st_cpu->cpu_iowait,
&st_cpu->cpu_hardirq,
&st_cpu->cpu_softirq,
&st_cpu->cpu_steal,
&st_cpu->cpu_guest,
&st_cpu->cpu_guest_nice); *uptime = st_cpu->cpu_user + st_cpu->cpu_nice +
st_cpu->cpu_sys + st_cpu->cpu_idle +
st_cpu->cpu_iowait + st_cpu->cpu_hardirq +
st_cpu->cpu_steal + st_cpu->cpu_softirq;
} else if (!strncmp(line, "cpu", )) {
...
} fclose(fp);
}

3.2 进程创建及切换

pcsw_act读取/proc/stat节点,解析其中的ctxt和processes信息。

同样的/proc/stat中,统计信息是启动以来的累计值,图标中现实的不同时间段的差值。

proc/s表示每秒创建的进程数目,cswch/s表示每秒进程切换次数。

void read_stat_pcsw(struct stats_pcsw *st_pcsw)
{
FILE *fp;
char line[]; if ((fp = fopen(STAT, "r")) == NULL)
return; while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "ctxt ", )) {--------------------------------------------ctxt是所有CPU的进程切换次数。
/* Read number of context switches */
sscanf(line + , "%llu", &st_pcsw->context_switch);
} else if (!strncmp(line, "processes ", )) {---------------------------------是整个系统创建进程的次数,total_forks,
/* Read number of processes created since system boot */
sscanf(line + , "%lu", &st_pcsw->processes);
}
} fclose(fp);
}

3.3 swap信息

swap_act读取/proc/vmstat节点,解析其中的pswpin和pswpout两个信息。

pswpin/s表示系统每秒从swap分区读入的页面数量,即移除掉swap;pswpout/s表示系统每秒写到swap分区的页面数量,即产生swap。

void read_vmstat_swap(struct stats_swap *st_swap)
{
FILE *fp;
char line[]; if ((fp = fopen(VMSTAT, "r")) == NULL)
return; while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "pswpin ", )) {-------------------------------对应PSWPIN,表示从swap分区读入页面。
/* Read number of swap pages brought in */
sscanf(line + , "%lu", &st_swap->pswpin);
}
else if (!strncmp(line, "pswpout ", )) {-------------------------对应PSWPOUT,表示将page写入到swap分区。
/* Read number of swap pages brought out */
sscanf(line + , "%lu", &st_swap->pswpout);
}
} fclose(fp);
}

3.4 页面统计信息

paging_act统计/proc/vmstat中页面交换统计信息。

Paging包括四张图标,分别统计/proc/vmstat中的PGPGIN、PGPGOUT、PGFAULT、PGMAJFAULT等等信息。

pgpgin/s表示系统每秒从磁盘中paged多少KB;pgpgout/s则表示到磁盘中多少KB。

fault/s表示系统每秒产生的页面异常数目,包括major和minor;majflt/s则表示页面异常是从磁盘中产生的。

pgfree/s表示每秒放入到free list的页面数量;pgscank/s、pgscand/s都表示扫描的页面数量,只不过前者表示kswapd扫描结果,后者表示直接扫描;pgsteal/s都表示从pagecache和swapcache中回收的页面数量。

%vmeff是pgsteal/pgscan表示页面回收的效率。

看fault/s和pgfree/s存在一定关系,前者表示内存申请,后者表示内存释放,存在先后关系。但是单位不一致,前者是次数,后者是页面。

void read_vmstat_paging(struct stats_paging *st_paging)
{
FILE *fp;
char line[];
unsigned long pgtmp; if ((fp = fopen(VMSTAT, "r")) == NULL)
return; st_paging->pgsteal = ;
st_paging->pgscan_kswapd = st_paging->pgscan_direct = ; while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "pgpgin ", )) {------------------------------------------------pgpgin和pgpgout分别对应PGPGIN和PGPGOUT,在submit_io()中更新。指内存和块设备志坚page数目,这里的page指的是disk sector。pgpgin表示从块设备读入,pgpgout写入到跨设备。
/* Read number of pages the system paged in */
sscanf(line + , "%lu", &st_paging->pgpgin);
}
else if (!strncmp(line, "pgpgout ", )) {
/* Read number of pages the system paged out */
sscanf(line + , "%lu", &st_paging->pgpgout);
}
else if (!strncmp(line, "pgfault ", )) {-------------------------------------------在vm_event_item[]中对应PGFAULT,在handle_mm_fault()中更新。统计产生page fault的信息。
/* Read number of faults (major+minor) made by the system */
sscanf(line + , "%lu", &st_paging->pgfault);
}
else if (!strncmp(line, "pgmajfault ", )) {---------------------------------------对应PGMAJFAULT,表示从磁盘而不是从内存中获取数据。
/* Read number of faults (major only) made by the system */
sscanf(line + , "%lu", &st_paging->pgmajfault);
}
else if (!strncmp(line, "pgfree ", )) {--------------------------------------------对应PGFREE,统计释放的页面次数。
/* Read number of pages freed by the system */
sscanf(line + , "%lu", &st_paging->pgfree);
}
else if (!strncmp(line, "pgsteal_", )) {-------------------------------------------统计PGSTEAL_KSWAPD和PGSTEAL_DIRECT信息,表示系统回收的kswapd和直接回收的页面数目。
/* Read number of pages stolen by the system */
sscanf(strchr(line, ' '), "%lu", &pgtmp);
st_paging->pgsteal += pgtmp;
}
else if (!strncmp(line, "pgscan_kswapd", )) {--------------------------------------统计PGSCAN_KSWAPD信息,表示从系统启动到现在kswapd后台进程扫描的页面数。
/* Read number of pages scanned by the kswapd daemon */
sscanf(strchr(line, ' '), "%lu", &pgtmp);
st_paging->pgscan_kswapd += pgtmp;
}
else if (!strncmp(line, "pgscan_direct", )) {--------------------------------------统计PGSCAN_DIRECT和PGSCAN_DIRECT_THROTTLE,统计世界回收页面数。
/* Read number of pages scanned directly */
sscanf(strchr(line, ' '), "%lu", &pgtmp);
st_paging->pgscan_direct += pgtmp;
}
} fclose(fp);
}

3.5 IO统计信息

io_act从/proc/diskstats读取IO统计信息。

上面的tps、rtps、wtps、bread/s、bwrtn/s分别对应采样结果dk_drive、dk_drive_rio、dk_drive_wio、dk_drive_rblk、dk_drive_wblk。

其中tps为rtps和wtps之和,表示完成读写次数;bread/s和bwrtn/s表示读、写扇区数目。

这5个参数都来源于diskstats_show()函数。

void read_diskstats_io(struct stats_io *st_io)
{
FILE *fp;
char line[];
char dev_name[MAX_NAME_LEN];
unsigned int major, minor;
unsigned long rd_ios, wr_ios, rd_sec, wr_sec; if ((fp = fopen(DISKSTATS, "r")) == NULL)
return; while (fgets(line, sizeof(line), fp) != NULL) { if (sscanf(line, "%u %u %s %lu %*u %lu %*u %lu %*u %lu",-----------scanf的%u之间的星号,表示跳过此输入。
&major, &minor, dev_name,
&rd_ios, &rd_sec, &wr_ios, &wr_sec) == ) { if (is_device(dev_name, IGNORE_VIRTUAL_DEVICES)) {--------------虚拟设备没有/sys/block/<device>/device,此特性用以判断dev_name对应的设备是否是真实的块设备。
st_io->dk_drive += (unsigned long long) rd_ios + (unsigned long long) wr_ios;
st_io->dk_drive_rio += rd_ios;
st_io->dk_drive_rblk += rd_sec;
st_io->dk_drive_wio += wr_ios;
st_io->dk_drive_wblk += wr_sec;
}
}
}
fclose(fp);
}

/proc/diskstats来源于内核的diskstats_show()

static int diskstats_show(struct seq_file *seqf, void *v)
{
struct gendisk *gp = v;
struct disk_part_iter piter;
struct hd_struct *hd;
char buf[BDEVNAME_SIZE];
int cpu; /*
if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
seq_puts(seqf, "major minor name"
" rio rmerge rsect ruse wio wmerge "
"wsect wuse running use aveq"
"\n\n");
*/ disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
while ((hd = disk_part_iter_next(&piter))) {
cpu = part_stat_lock();
part_round_stats(cpu, hd);
part_stat_unlock();
seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
"%u %lu %lu %lu %u %u %u %u\n",
MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
disk_name(gp, hd->partno, buf),
part_stat_read(hd, ios[READ]),-------------------------------------------------成功完成读的次数。
part_stat_read(hd, merges[READ]),----------------------------------------------合并读次数,为了效率可能会合并相邻的读和写。
part_stat_read(hd, sectors[READ]),---------------------------------------------读扇区的次数。
jiffies_to_msecs(part_stat_read(hd, ticks[READ])),-----------------------------读花的时间,这里是所有读操作所花费的毫秒数。
part_stat_read(hd, ios[WRITE]),------------------------------------------------成功完成写的次数。
part_stat_read(hd, merges[WRITE]),---------------------------------------------合并写次数。
part_stat_read(hd, sectors[WRITE]),--------------------------------------------写扇区次数。
jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),----------------------------写花的时间。
part_in_flight(hd),
jiffies_to_msecs(part_stat_read(hd, io_ticks)),
jiffies_to_msecs(part_stat_read(hd, time_in_queue))
);
}
disk_part_iter_exit(&piter); return ;
}

3.6 内存及swap统计信息

memory_act统计/proc/meminfo的内存和swap信息。

kbmemfree是所有free内存大小,kbavail是扣除保留内存,加上部分pagecache和可回收内存;kbmemused是目前系统内存使用量,不包括内核使用量。

%memused是内存使用占总内存百分比。

kbcommit是当前场景系统需要使用到的内存量,实际上可能并没有申请这么多内存。这是因为分配的内存只有在使用到时,才会产生缺页异常。

这里的kbcommit和页面统计信息相呼应,此处kbcommit突然增加,产生了很多page fault。

从图表中的名称大概就能找到对应的/proc/meminfo中的字符项。

其中%memused和%commit查看stub_print_memory_stats(),%memused为(MemTotal-MemFree)/MemTotal。

%commit为Commited_AS/(MemTotal+SwapTotal)。

在/proc/meminfo中看到的CommitLimit可能是proc/sys/vm/overcommit_kbytes;或者按照当前可以用内存乘以overcommit_ratio这个比例得到。

在实际使用中,还需要结合overcommit_memory类型来看,参考overcommit_memoryovercommit_ratio

unsigned long vm_commit_limit(void)
{
unsigned long allowed; if (sysctl_overcommit_kbytes)
allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - );
else
allowed = ((totalram_pages - hugetlb_total_pages())
* sysctl_overcommit_ratio / );
allowed += total_swap_pages; return allowed;
}

read_meminfo()从/proc/meminfo中解析数据。

void read_meminfo(struct stats_memory *st_memory)
{
FILE *fp;
char line[]; if ((fp = fopen(MEMINFO, "r")) == NULL)
return; while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "MemTotal:", )) {
/* Read the total amount of memory in kB */
sscanf(line + , "%lu", &st_memory->tlmkb);
}
else if (!strncmp(line, "MemFree:", )) {
/* Read the amount of free memory in kB */
sscanf(line + , "%lu", &st_memory->frmkb);
}
else if (!strncmp(line, "MemAvailable:", )) {
/* Read the amount of available memory in kB */
sscanf(line + , "%lu", &st_memory->availablekb);
}
else if (!strncmp(line, "Buffers:", )) {
/* Read the amount of buffered memory in kB */
sscanf(line + , "%lu", &st_memory->bufkb);
}
else if (!strncmp(line, "Cached:", )) {
/* Read the amount of cached memory in kB */
sscanf(line + , "%lu", &st_memory->camkb);
}
else if (!strncmp(line, "SwapCached:", )) {
/* Read the amount of cached swap in kB */
sscanf(line + , "%lu", &st_memory->caskb);
}
else if (!strncmp(line, "Active:", )) {
/* Read the amount of active memory in kB */
sscanf(line + , "%lu", &st_memory->activekb);
}
else if (!strncmp(line, "Inactive:", )) {
/* Read the amount of inactive memory in kB */
sscanf(line + , "%lu", &st_memory->inactkb);
}
else if (!strncmp(line, "SwapTotal:", )) {
/* Read the total amount of swap memory in kB */
sscanf(line + , "%lu", &st_memory->tlskb);
}
else if (!strncmp(line, "SwapFree:", )) {
/* Read the amount of free swap memory in kB */
sscanf(line + , "%lu", &st_memory->frskb);
}
else if (!strncmp(line, "Dirty:", )) {
/* Read the amount of dirty memory in kB */
sscanf(line + , "%lu", &st_memory->dirtykb);
}
else if (!strncmp(line, "Committed_AS:", )) {
/* Read the amount of commited memory in kB */
sscanf(line + , "%lu", &st_memory->comkb);
}
else if (!strncmp(line, "AnonPages:", )) {
/* Read the amount of pages mapped into userspace page tables in kB */
sscanf(line + , "%lu", &st_memory->anonpgkb);
}
else if (!strncmp(line, "Slab:", )) {
/* Read the amount of in-kernel data structures cache in kB */
sscanf(line + , "%lu", &st_memory->slabkb);
}
else if (!strncmp(line, "KernelStack:", )) {
/* Read the kernel stack utilization in kB */
sscanf(line + , "%lu", &st_memory->kstackkb);
}
else if (!strncmp(line, "PageTables:", )) {
/* Read the amount of memory dedicated to the lowest level of page tables in kB */
sscanf(line + , "%lu", &st_memory->pgtblkb);
}
else if (!strncmp(line, "VmallocUsed:", )) {
/* Read the amount of vmalloc area which is used in kB */
sscanf(line + , "%lu", &st_memory->vmusedkb);
}
} fclose(fp);
}

下图的kbswpfree、kbswpused、kbswpcad通过字面意思即可知其对应的meminfo项为SwapFree、SwapTotal-SwapFree、SwapCached。

3.7 中断统计信息

中断你统计信息同样来自/proc/stat,解析intr字段。第一个是启动以来所有中断触发次数,后面是单个中断触发次数。

生成的表格中包含了对应的图标sum,以及每个中断统计信息。

void read_stat_irq(struct stats_irq *st_irq, int nbr)
{
FILE *fp;
struct stats_irq *st_irq_i;
char line[];
int i, pos; if ((fp = fopen(STAT, "r")) == NULL)
return; while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "intr ", )) {-------------------------------------------------/proc/stat的intr字段。
/* Read total number of interrupts received since system boot */
sscanf(line + , "%llu", &st_irq->irq_nr);
pos = strcspn(line + , " ") + ; for (i = ; i < nbr; i++) {
st_irq_i = st_irq + i;
sscanf(line + pos, " %llu", &st_irq_i->irq_nr);
pos += strcspn(line + pos + , " ") + ;
}
}
} fclose(fp);
}

3.8

ktables_act

#define FDENTRY_STATE    "/proc/sys/fs/dentry-state"
#define FFILE_NR "/proc/sys/fs/file-nr"
#define FINODE_STATE "/proc/sys/fs/inode-state"
#define PTY_NR "/proc/sys/kernel/pty/nr" void read_kernel_tables(struct stats_ktables *st_ktables)
{
FILE *fp;
unsigned int parm;
int rc = ; /* Open /proc/sys/fs/dentry-state file */
if ((fp = fopen(FDENTRY_STATE, "r")) != NULL) {
rc = fscanf(fp, "%*d %u",
&st_ktables->dentry_stat);
fclose(fp);
if (rc == ) {
st_ktables->dentry_stat = ;
}
} /* Open /proc/sys/fs/file-nr file */
if ((fp = fopen(FFILE_NR, "r")) != NULL) {
rc = fscanf(fp, "%u %u",
&st_ktables->file_used, &parm);
fclose(fp);
/*
* The number of used handles is the number of allocated ones
* minus the number of free ones.
*/
if (rc == ) {
st_ktables->file_used -= parm;
}
else {
st_ktables->file_used = ;
}
} /* Open /proc/sys/fs/inode-state file */
if ((fp = fopen(FINODE_STATE, "r")) != NULL) {
rc = fscanf(fp, "%u %u",
&st_ktables->inode_used, &parm);
fclose(fp);
/*
* The number of inuse inodes is the number of allocated ones
* minus the number of free ones.
*/
if (rc == ) {
st_ktables->inode_used -= parm;
}
else {
st_ktables->inode_used = ;
}
} /* Open /proc/sys/kernel/pty/nr file */
if ((fp = fopen(PTY_NR, "r")) != NULL) {
rc = fscanf(fp, "%u",
&st_ktables->pty_nr);
fclose(fp);
if (rc == ) {
st_ktables->pty_nr = ;
}
}
}

3.9 load和queue统计信息

queue_act从/proc/loadavg获取load信息,从/proc/stat获取queue统计信息。

ldavg-1、ldavg-5、ldavg-15分别表示1、5、15分钟内进程对立中平均进程数目,包括正在运行的进程和准备好等待运行的进程数目。

runq-sz表示运行队列大小,plist-sz表示所有进程总数nr_threads。

runq-sz大表示等待运行的进程数目较多。

blocked表示处于iowait状态的进程数目。

void read_loadavg(struct stats_queue *st_queue)
{
FILE *fp;
char line[];
int load_tmp[];
int rc; if ((fp = fopen(LOADAVG, "r")) == NULL)
return; /* Read load averages and queue length */
rc = fscanf(fp, "%d.%u %d.%u %d.%u %lu/%u %*d\n",------------------------------可以看出从/proc/loadavg中获取信息,然后最后一个数据忽略。
&load_tmp[], &st_queue->load_avg_1,
&load_tmp[], &st_queue->load_avg_5,
&load_tmp[], &st_queue->load_avg_15,
&st_queue->nr_running,
&st_queue->nr_threads); fclose(fp); if (rc < )
return; st_queue->load_avg_1 += load_tmp[] * ;
st_queue->load_avg_5 += load_tmp[] * ;
st_queue->load_avg_15 += load_tmp[] * ; if (st_queue->nr_running) {
/* Do not take current process into account */
st_queue->nr_running--;
} /* Read nr of tasks blocked from /proc/stat */
if ((fp = fopen(STAT, "r")) == NULL)
return; while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "procs_blocked ", )) {--------------------------------从/proc/stat中获取procs_blocked项,表示处于iowait状态的进程数目。
/* Read number of processes blocked */
sscanf(line + , "%lu", &st_queue->procs_blocked);
break;
}
} fclose(fp);
}

3.10 块设备统计信息

disk_act和io_act一样是从/proc/diskstats中获取统计信息,

图标中的四项tps表示块设备读写次数频率;rkB/s和wkB/s表示块设备读写速率;await表示一次读或写耗时。

tps值大说明此段时间读写较频繁。

await值大表示当前读写耗时较大,可能存在问题。

__print_funct_t print_disk_stats(struct activity *a, int prev, int curr,
unsigned long long itv)
{
... for (i = ; i < a->nr; i++) {
...
printf("%-11s", timestamp[curr]); cprintf_in(IS_STR, " %9s", dev_name, );-----------------------------sdc是设备当前统计信息,sdp是设备前一次统计信息,itv是两次时间间隔。
cprintf_f(NO_UNIT, , , ,
S_VALUE(sdp->nr_ios, sdc->nr_ios, itv));----------------------对应图标中的tps,nr_ios表示块设备读写次数之和。tps表示块设备读写频率。
cprintf_f(unit, , , ,
S_VALUE(sdp->rd_sect, sdc->rd_sect, itv) / ,
S_VALUE(sdp->wr_sect, sdc->wr_sect, itv) / );-----------------对应图标的rkB/s和wkB/s,同样rd_sect和wr_sect可以计算出以KB为单位的读写速率。
/* See iostat for explanations */
cprintf_f(unit, , , ,
xds.arqsz / );
cprintf_f(NO_UNIT, , , ,
S_VALUE(sdp->rq_ticks, sdc->rq_ticks, itv) / 1000.0,
xds.await,------------------------------------------------------对应await,在compute_ext_disk_stats()中计算。表示每次读写平均耗时。
xds.svctm);
cprintf_pc(DISPLAY_UNIT(flags), , , ,
xds.util / 10.0);
printf("\n");
}
}

3.11 CPU频率

pwr_cpufreq_act从/proc/cpuinfo中获取频率信息,CPU Frequency all显示的是所有CPU频率的平均值。

从下面代码分析可知,从关键词processor中获取CPU号,从cpu MHz获取CPU频率。

void read_cpuinfo(struct stats_pwr_cpufreq *st_pwr_cpufreq, int nbr)
{
FILE *fp;
struct stats_pwr_cpufreq *st_pwr_cpufreq_i;
char line[];
int nr = ;
unsigned int proc_nb = , ifreq, dfreq; if ((fp = fopen(CPUINFO, "r")) == NULL)
return; st_pwr_cpufreq->cpufreq = ; while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "processor\t", )) {
sscanf(strchr(line, ':') + , "%u", &proc_nb);
}
/* Entry in /proc/cpuinfo is different between Intel and Power architectures */
else if (!strncmp(line, "cpu MHz\t", ) ||
!strncmp(line, "clock\t", )) {
sscanf(strchr(line, ':') + , "%u.%u", &ifreq, &dfreq); if (proc_nb < (nbr - )) {
st_pwr_cpufreq_i = st_pwr_cpufreq + proc_nb + ;
st_pwr_cpufreq_i->cpufreq = ifreq * + dfreq / ; st_pwr_cpufreq->cpufreq += st_pwr_cpufreq_i->cpufreq;
nr++;
}
else if (!proc_nb && (nbr == )) {
st_pwr_cpufreq->cpufreq = ifreq * + dfreq / ;
}
}
} fclose(fp);
...
}

3.12 统计串口线信息

serial_act从/proc/tty/driver/serial获取串口线统计信息。

void read_tty_driver_serial(struct stats_serial *st_serial, int nbr)
{
FILE *fp;
struct stats_serial *st_serial_i;
int sl = ;
char line[];
char *p; if ((fp = fopen(SERIAL, "r")) == NULL)
return; while ((fgets(line, sizeof(line), fp) != NULL) && (sl < nbr)) { if ((p = strstr(line, "tx:")) != NULL) {
st_serial_i = st_serial + sl;
sscanf(line, "%u", &st_serial_i->line);
/*
* A value of 0 means an unused structure.
* So increment it to make sure it is not zero.
*/
(st_serial_i->line)++;
/*
* Read the number of chars transmitted and received by
* current serial line.
*/
sscanf(p + , "%u", &st_serial_i->tx);
if ((p = strstr(line, "rx:")) != NULL) {
sscanf(p + , "%u", &st_serial_i->rx);
}
if ((p = strstr(line, "fe:")) != NULL) {
sscanf(p + , "%u", &st_serial_i->frame);
}
if ((p = strstr(line, "pe:")) != NULL) {
sscanf(p + , "%u", &st_serial_i->parity);
}
if ((p = strstr(line, "brk:")) != NULL) {
sscanf(p + , "%u", &st_serial_i->brk);
}
if ((p = strstr(line, "oe:")) != NULL) {
sscanf(p + , "%u", &st_serial_i->overrun);
} sl++;
}
} fclose(fp);
}

3.13 获取网口统计信息

net_dev_act从/proc/net/dev中获取网口的统计信息,从/sys/class/net/xxx/duplex和/sys/class/net/xxx/speed中获取双工和速度信息。

从下面关于/proc/net/dev解释可知,rxpck对应rx_packets,rxpck/s就是每秒接收packet数;txpck/s就是每个发送packet数目。

rxkB/s是每秒接受多少k字节;txkB/s是每秒发送多少k字节。

rxmcst/s表示每秒接收到的multicast packet数目。

%ifutil跟每秒发送接收的KB数有关,还跟全双工,单双工有关,以及设备的速度有关;表示网络设备使用率。

双工信息从/sys/class/net/%s/duplex获取,速度信息从从/sys/class/net/%s/speed获取。

从此图看,网络的使用率并不高,说明网络不频繁。

int read_net_dev(struct stats_net_dev *st_net_dev, int nbr)
{
FILE *fp;
struct stats_net_dev *st_net_dev_i;
char line[];
char iface[MAX_IFACE_LEN];
int dev = ;
int pos; if ((fp = fopen(NET_DEV, "r")) == NULL)----------------------------------------------------------------从/proc/net/dev获取信息。
return ; while ((fgets(line, sizeof(line), fp) != NULL) && (dev < nbr)) { pos = strcspn(line, ":");
if (pos < strlen(line)) {
st_net_dev_i = st_net_dev + dev;
strncpy(iface, line, MINIMUM(pos, MAX_IFACE_LEN - ));
iface[MINIMUM(pos, MAX_IFACE_LEN - )] = '\0';
sscanf(iface, "%s", st_net_dev_i->interface); /* Skip heading spaces */
sscanf(line + pos + , "%llu %llu %*u %*u %*u %*u %llu %llu %llu %llu "
"%*u %*u %*u %*u %*u %llu",
&st_net_dev_i->rx_bytes,
&st_net_dev_i->rx_packets,
&st_net_dev_i->rx_compressed,
&st_net_dev_i->multicast,
&st_net_dev_i->tx_bytes,
&st_net_dev_i->tx_packets,
&st_net_dev_i->tx_compressed);
dev++;
}
} fclose(fp); return dev;
} void read_if_info(struct stats_net_dev *st_net_dev, int nbr)
{
FILE *fp;
struct stats_net_dev *st_net_dev_i;
char filename[], duplex[];
int dev, n; for (dev = ; dev < nbr; dev++) { st_net_dev_i = st_net_dev + dev; /* Read speed info */
sprintf(filename, IF_DUPLEX, st_net_dev_i->interface);----------------------------------------------从/sys/class/net/%s/duplex获取信息。 if ((fp = fopen(filename, "r")) == NULL)
/* Cannot read NIC duplex */
continue; n = fscanf(fp, "%31s", duplex); fclose(fp); if (n != )
/* Cannot read NIC duplex */
continue; if (!strcmp(duplex, K_DUPLEX_FULL)) {
st_net_dev_i->duplex = C_DUPLEX_FULL;
}
else if (!strcmp(duplex, K_DUPLEX_HALF)) {
st_net_dev_i->duplex = C_DUPLEX_HALF;
}
else
continue; /* Read speed info */
sprintf(filename, IF_SPEED, st_net_dev_i->interface);--------------------------------------------------从/sys/class/net/%s/speed获取信息。 if ((fp = fopen(filename, "r")) == NULL)
/* Cannot read NIC speed */
continue; n = fscanf(fp, "%u", &st_net_dev_i->speed); fclose(fp); if (n != ) {
st_net_dev_i->speed = ;
}
}
}

 

3.13.1 /proc/net/dev

/proc/net/dev节点在dev_proc_net_init()中创建,对应的fops是dev_seq_fops。

这里重点看一下dev_seq_show():

static int dev_seq_show(struct seq_file *seq, void *v)
{
if (v == SEQ_START_TOKEN)
seq_puts(seq, "Inter-| Receive "
" | Transmit\n"
" face |bytes packets errs drop fifo frame "
"compressed multicast|bytes packets errs "
"drop fifo colls carrier compressed\n");
else
dev_seq_printf_stats(seq, v);
return ;
} static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
{
struct rtnl_link_stats64 temp;
const struct rtnl_link_stats64*stats = dev_get_stats(dev, &temp); seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
"%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
dev->name, stats->rx_bytes, stats->rx_packets,
stats->rx_errors,
stats->rx_dropped + stats->rx_missed_errors,
stats->rx_fifo_errors,
stats->rx_length_errors + stats->rx_over_errors +
stats->rx_crc_errors + stats->rx_frame_errors,
stats->rx_compressed, stats->multicast,
stats->tx_bytes, stats->tx_packets,
stats->tx_errors, stats->tx_dropped,
stats->tx_fifo_errors, stats->collisions,
stats->tx_carrier_errors +
stats->tx_aborted_errors +
stats->tx_window_errors +
stats->tx_heartbeat_errors,
stats->tx_compressed);
}

3.14 网络错误统计信息

net_edev_act从/proc/net/dev网络错误统计信息。

网络错误信息数据来源和网络信息一样,都来自于/proc/net/dev。

关键结构体也是struct rtnl_link_stats64

void read_net_edev(struct stats_net_edev *st_net_edev, int nbr)
{
FILE *fp;
struct stats_net_edev *st_net_edev_i;
static char line[];
char iface[MAX_IFACE_LEN];
int dev = ;
int pos; if ((fp = fopen(NET_DEV, "r")) == NULL)
return; while ((fgets(line, sizeof(line), fp) != NULL) && (dev < nbr)) { pos = strcspn(line, ":");
if (pos < strlen(line)) {
st_net_edev_i = st_net_edev + dev;
strncpy(iface, line, MINIMUM(pos, MAX_IFACE_LEN - ));
iface[MINIMUM(pos, MAX_IFACE_LEN - )] = '\0';
sscanf(iface, "%s", st_net_edev_i->interface); /* Skip heading spaces */
sscanf(line + pos + , "%*u %*u %llu %llu %llu %llu %*u %*u %*u %*u "
"%llu %llu %llu %llu %llu",
&st_net_edev_i->rx_errors,------------------对应rx_erros,表示接受到的bad packet。
&st_net_edev_i->rx_dropped,-----------------对应rx_dropped+rx_missed_errors。
&st_net_edev_i->rx_fifo_errors,-------------对应rx_fifo_errors。
&st_net_edev_i->rx_frame_errors,------------对应rx_length_errors+rx_over_errros。
&st_net_edev_i->tx_errors,
&st_net_edev_i->tx_dropped,
&st_net_edev_i->tx_fifo_errors,
&st_net_edev_i->collisions,-----------------对应collisions
&st_net_edev_i->tx_carrier_errors);---------包括tx_carrier_errors+tx_aborted_errors+tx_window_errors+tx_heartbeat_errors。
            dev++;
}
} fclose(fp);
}

获取网络设备统计信息的核心数据结构式struct rtnl_link_stat64

struct rtnl_link_stats64 {
__u64 rx_packets; /* total packets received */
__u64 tx_packets; /* total packets transmitted */
__u64 rx_bytes; /* total bytes received */
__u64 tx_bytes; /* total bytes transmitted */
__u64 rx_errors; /* bad packets received */
__u64 tx_errors; /* packet transmit problems */
__u64 rx_dropped; /* no space in linux buffers */
__u64 tx_dropped; /* no space available in linux */
__u64 multicast; /* multicast packets received */
__u64 collisions; /* detailed rx_errors: */
__u64 rx_length_errors;
__u64 rx_over_errors; /* receiver ring buff overflow */
__u64 rx_crc_errors; /* recved pkt with crc error */
__u64 rx_frame_errors; /* recv'd frame alignment error */
__u64 rx_fifo_errors; /* recv'r fifo overrun */
__u64 rx_missed_errors; /* receiver missed packet */ /* detailed tx_errors */
__u64 tx_aborted_errors;
__u64 tx_carrier_errors;
__u64 tx_fifo_errors;
__u64 tx_heartbeat_errors;
__u64 tx_window_errors; /* for cslip etc */
__u64 rx_compressed;
__u64 tx_compressed; __u64 rx_nohandler; /* dropped, no handler found */
};

3.15 NFS客户端统计信息

net_nfs_act读取/proc/net/rpc/nfs来分析作为nfs客户端的统计信息。

void read_net_nfs(struct stats_net_nfs *st_net_nfs)
{
FILE *fp;
char line[];
unsigned int getattcnt = , accesscnt = , readcnt = , writecnt = ; if ((fp = fopen(NET_RPC_NFS, "r")) == NULL)
return; memset(st_net_nfs, , STATS_NET_NFS_SIZE); while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "rpc ", )) {
sscanf(line + , "%u %u",
&st_net_nfs->nfs_rpccnt, &st_net_nfs->nfs_rpcretrans);
}
else if (!strncmp(line, "proc3 ", )) {
sscanf(line + , "%*u %*u %u %*u %*u %u %*u %u %u",
&getattcnt, &accesscnt, &readcnt, &writecnt); st_net_nfs->nfs_getattcnt += getattcnt;
st_net_nfs->nfs_accesscnt += accesscnt;
st_net_nfs->nfs_readcnt += readcnt;
st_net_nfs->nfs_writecnt += writecnt;
}
else if (!strncmp(line, "proc4 ", )) {
sscanf(line + , "%*u %*u %u %u "
"%*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %u %u",
&readcnt, &writecnt, &accesscnt, &getattcnt); st_net_nfs->nfs_getattcnt += getattcnt;
st_net_nfs->nfs_accesscnt += accesscnt;
st_net_nfs->nfs_readcnt += readcnt;
st_net_nfs->nfs_writecnt += writecnt;
}
} fclose(fp);
}

3.16 NFS服务端统计信息

net_nfsd_act

#define NET_RPC_NFSD "/proc/net/rpc/nfsd"

void read_net_nfsd(struct stats_net_nfsd *st_net_nfsd)
{
FILE *fp;
char line[];
unsigned int getattcnt = , accesscnt = , readcnt = , writecnt = ; if ((fp = fopen(NET_RPC_NFSD, "r")) == NULL)
return; memset(st_net_nfsd, , STATS_NET_NFSD_SIZE); while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "rc ", )) {
sscanf(line + , "%u %u",
&st_net_nfsd->nfsd_rchits, &st_net_nfsd->nfsd_rcmisses);
}
else if (!strncmp(line, "net ", )) {
sscanf(line + , "%u %u %u",
&st_net_nfsd->nfsd_netcnt, &st_net_nfsd->nfsd_netudpcnt,
&st_net_nfsd->nfsd_nettcpcnt);
}
else if (!strncmp(line, "rpc ", )) {
sscanf(line + , "%u %u",
&st_net_nfsd->nfsd_rpccnt, &st_net_nfsd->nfsd_rpcbad);
}
else if (!strncmp(line, "proc3 ", )) {
sscanf(line + , "%*u %*u %u %*u %*u %u %*u %u %u",
&getattcnt, &accesscnt, &readcnt, &writecnt); st_net_nfsd->nfsd_getattcnt += getattcnt;
st_net_nfsd->nfsd_accesscnt += accesscnt;
st_net_nfsd->nfsd_readcnt += readcnt;
st_net_nfsd->nfsd_writecnt += writecnt; }
else if (!strncmp(line, "proc4ops ", )) {
sscanf(line + , "%*u %*u %*u %*u %u "
"%*u %*u %*u %*u %*u %u "
"%*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %u "
"%*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %*u %u",
&accesscnt, &getattcnt, &readcnt, &writecnt); st_net_nfsd->nfsd_getattcnt += getattcnt;
st_net_nfsd->nfsd_accesscnt += accesscnt;
st_net_nfsd->nfsd_readcnt += readcnt;
st_net_nfsd->nfsd_writecnt += writecnt;
}
} fclose(fp);
}

3.17 网络socket统计信息

net_sock_act读取/proc/net/sockstat统计TCP和UDP信息。

/proc/net/sockstat的数据来源于sockstat_seq_show(),这里面统计了当前系统socket的使用情况。

static int sockstat_seq_show(struct seq_file *seq, void *v)
{
struct net *net = seq->private;
unsigned int frag_mem;
int orphans, sockets; local_bh_disable();
orphans = percpu_counter_sum_positive(&tcp_orphan_count);
sockets = proto_sockets_allocated_sum_positive(&tcp_prot);
local_bh_enable(); socket_seq_show(seq);---------------------------------------------------------从sockets_ in_use中获取每个CPU在使用中的socket数目。显示内容sockets: used xxx。tw表示TimeWait的socket数目。
seq_printf(seq, "TCP: inuse %d orphan %d tw %d alloc %d mem %ld\n",
sock_prot_inuse_get(net, &tcp_prot), orphans,
atomic_read(&tcp_death_row.tw_count), sockets,
proto_memory_allocated(&tcp_prot));------------------------------------第一个参数表示TCP协议使用的socket数目。
seq_printf(seq, "UDP: inuse %d mem %ld\n",
sock_prot_inuse_get(net, &udp_prot),
proto_memory_allocated(&udp_prot));------------------------------------第一个参数表示UDP协议使用的socket数目。
seq_printf(seq, "UDPLITE: inuse %d\n",
sock_prot_inuse_get(net, &udplite_prot));
seq_printf(seq, "RAW: inuse %d\n",
sock_prot_inuse_get(net, &raw_prot));----------------------------------RAW类型socket使用数目。
frag_mem = ip_frag_mem(net);
seq_printf(seq, "FRAG: inuse %u memory %u\n", !!frag_mem, frag_mem);
return ;
}

Sockets图表中的数据totsck、tcpsck、udpsck、rawsck、tcp-tw、ip-frag分别来源于read_net_sock()函数解析。

可见totsck表示系统所有Socket数目,其他子类表示不同类型socket数目。

void read_net_sock(struct stats_net_sock *st_net_sock)
{
FILE *fp;
char line[];
char *p; if ((fp = fopen(NET_SOCKSTAT, "r")) == NULL)
return; while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "sockets:", )) {
/* Sockets */
sscanf(line + , "%u", &st_net_sock->sock_inuse);
}
else if (!strncmp(line, "TCP:", )) {
/* TCP sockets */
sscanf(line + , "%u", &st_net_sock->tcp_inuse);
if ((p = strstr(line, "tw")) != NULL) {
sscanf(p + , "%u", &st_net_sock->tcp_tw);
}
}
else if (!strncmp(line, "UDP:", )) {
/* UDP sockets */
sscanf(line + , "%u", &st_net_sock->udp_inuse);
}
else if (!strncmp(line, "RAW:", )) {
/* RAW sockets */
sscanf(line + , "%u", &st_net_sock->raw_inuse);
}
else if (!strncmp(line, "FRAG:", )) {
/* FRAGments */
sscanf(line + , "%u", &st_net_sock->frag_inuse);
}
} fclose(fp);
}

3.18 huge页面统计信息

huge_act通过读取/proc/meminfo获取huge页面统计信息。

void read_meminfo_huge(struct stats_huge *st_huge)
{
FILE *fp;
char line[];
unsigned long szhkb = ; if ((fp = fopen(MEMINFO, "r")) == NULL)
return; while (fgets(line, sizeof(line), fp) != NULL) { if (!strncmp(line, "HugePages_Total:", )) {
/* Read the total number of huge pages */
sscanf(line + , "%lu", &st_huge->tlhkb);
}
else if (!strncmp(line, "HugePages_Free:", )) {
/* Read the number of free huge pages */
sscanf(line + , "%lu", &st_huge->frhkb);
}
else if (!strncmp(line, "Hugepagesize:", )) {
/* Read the default size of a huge page in kB */
sscanf(line + , "%lu", &szhkb);
}
} fclose(fp); /* We want huge pages stats in kB and not expressed in a number of pages */
st_huge->tlhkb *= szhkb;
st_huge->frhkb *= szhkb;
}

3.19 softnet统计信息

softnet_act通过/proc/net/softnet_stat获取统计信息,

void read_softnet(struct stats_softnet *st_softnet, int nbr)
{
FILE *fp;
struct stats_softnet *st_softnet_i;
char line[];
unsigned int proc_nb = ; /* Open /proc/net/softnet_stat file */
if ((fp = fopen(NET_SOFTNET, "r")) == NULL)
return; /*
* Init a structure that will contain the values for CPU "all".
* CPU "all" doesn't exist in /proc/net/softnet_stat file, so
* we compute its values as the sum of the values of each CPU.
*/
memset(st_softnet, , sizeof(struct stats_softnet)); while ((fgets(line, sizeof(line), fp) != NULL) && (proc_nb < nbr)) { st_softnet_i = st_softnet + proc_nb++;
sscanf(line, "%x %x %x %*x %*x %*x %*x %*x %*x %x %x",
&st_softnet_i->processed,
&st_softnet_i->dropped,
&st_softnet_i->time_squeeze,
&st_softnet_i->received_rps,
&st_softnet_i->flow_limit); st_softnet->processed += st_softnet_i->processed;
st_softnet->dropped += st_softnet_i->dropped;
st_softnet->time_squeeze += st_softnet_i->time_squeeze;
st_softnet->received_rps += st_softnet_i->received_rps;
st_softnet->flow_limit += st_softnet_i->flow_limit;
} fclose(fp);
}

/proc/net/softnet_stat数据来源于softnet_seq_show()。

static int softnet_seq_show(struct seq_file *seq, void *v)
{
struct softnet_data *sd = v;
unsigned int flow_limit_count = ; #ifdef CONFIG_NET_FLOW_LIMIT
struct sd_flow_limit *fl; rcu_read_lock();
fl = rcu_dereference(sd->flow_limit);
if (fl)
flow_limit_count = fl->count;
rcu_read_unlock();
#endif seq_printf(seq,
"%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
sd->processed, sd->dropped, sd->time_squeeze, ,
, , , , /* was fastroute */
, /* was cpu_collision */
sd->received_rps, flow_limit_count);
return ;
}

ksar、sar及相关内核知识点解析的更多相关文章

  1. Java 面试知识点解析(二)——高并发编程篇

    前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...

  2. Java 面试知识点解析(四)——版本特性篇

    前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...

  3. ARM内核全解析,从ARM7,ARM9到Cortex-A7,A8,A9,A12,A15到Cortex-A53,A57

    转自: ARM内核全解析,从ARM7,ARM9到Cortex-A7,A8,A9,A12,A15到Cortex-A53,A57 前不久ARM正式宣布推出新款ARMv8架构的Cortex-A50处理器系列 ...

  4. /proc/sys/ 下内核参数解析

    http://blog.itpub.net/15480802/viewspace-753819/ http://blog.itpub.net/15480802/viewspace-753757/ ht ...

  5. 知名互联网公司校招 Java 开发岗面试知识点解析

    天之道,损有余而补不足,是故虚胜实,不足胜有余. 本文作者在一年之内参加过多场面试,应聘岗位均为 Java 开发方向.在不断的面试中,分类总结了 Java 开发岗位面试中的一些知识点. 主要包括以下几 ...

  6. Java 面试知识点解析(三)——JVM篇

    前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...

  7. Java 面试知识点解析(五)——网络协议篇

    前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...

  8. Java 面试知识点解析(六)——数据库篇

    前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...

  9. Java 面试知识点解析(七)——Web篇

    前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...

随机推荐

  1. RDIFramework.NET ━ .NET快速信息化系统开发框架 V3.2->Web版本新增新的角色授权管理界面效率更高、更规范

    角色授权管理模块主要是对角色的相应权限进行集中设置.在角色权限管理模块中,管理员可以添加或移除指定角色所包含的用户.可以分配或授予指定角色的模块(菜单)的访问权限.可以收回或分配指定角色的操作(功能) ...

  2. 三种方法实现CSS三栏布局

    本文由云+社区发表 作者:前端林子 本文会分别介绍三种CSS实现三栏布局的方法,可在浏览器中打开查看效果 1.方法一:自身浮动的方法 实现方法:需要左栏向左浮动,右栏向右浮动,中间设左右margin来 ...

  3. Docker 镜像之存储管理

    笔者在<Docker 镜像之进阶篇>中介绍了镜像分层.写时复制以及内容寻址存储(content-addressable storage)等技术特性,为了支持这些特性,docker 设计了一 ...

  4. SpringCloud应对高并发的思路

    一.Eureka的高可用性 Eureka下面的服务实例默认每隔30秒会发送一个HTTP心跳给Eureka,来告诉Eureka服务还活着,每个服务实例每隔30秒也会通过HTTP请求向Eureka获取服务 ...

  5. js内存深入学习(二)

    继上一篇文章 js内存深入学习(一) 3. 内存泄漏 对于持续运行的服务进程(daemon),必须及时释放不再用到的内存.否则,内存占用越来越高,轻则影响系统性能,重则导致进程崩溃. 对于不再用到的内 ...

  6. django中url路由配置及渲染方式

    今天我们学习如何配置url.如何传参.如何命名.以及渲染的方式,内容大致有以下几个方面. 创建视图函数并访问 创建app django中url规则 捕获参数 路径转换器 正则表达式 额外参数 渲染方式 ...

  7. Asp.NetCore程序发布到CentOs(含安装部署netcore)--最佳实践(一)

    环境 本地 win7 服务器:Virtual Box 上的Centos ssh工具: Xshell 文件传输: xftp 1.在本地创建asp.net core应用发布 1.1 使用Vs2017 新建 ...

  8. Php中的goto用法

    我们先举个简单示例: <?php goto LABEL; //这个标签自定义 echo '乔峰'; LABEL: echo '鸠摩智'; 以上例程会输出:鸠摩智 解释:goto 操作符可以用来跳 ...

  9. 记Android开发中的一些另类使用

    1.使用recyclerview,直接添加下列依赖就可以使用recyclerview,版本号与appcompat-v7版本号相同 compile 'com.android.support:design ...

  10. fork/join概述

    Fork/Join是java 7 解决并发问题的解决方案. 是 java内部并行框架.核心思想分别为拆分任务和结果合并,在核心思想外,为了提高cpu多核的利用率,设计了工作窃取算法,并将工作队列设计为 ...