python进程池multiprocessing.Pool和线程池multiprocessing.dummy.Pool实例
进程池:
# -*- coding: utf-8 -*- import multiprocessing
import time def func(msg):
print('msg: ', msg)
time.sleep(1)
print('********')
return 'func_return: %s' % msg if __name__ == '__main__':
# apply_async
print('\n--------apply_async------------')
pool = multiprocessing.Pool(processes=4)
results = []
for i in range(10):
msg = 'hello world %d' % i
result = pool.apply_async(func, (msg, ))
results.append(result)
print('apply_async: 不堵塞') for i in results:
i.wait() # 等待进程函数执行完毕 for i in results:
if i.ready(): # 进程函数是否已经启动了
if i.successful(): # 进程函数是否执行成功
print(i.get()) # 进程函数返回值 # apply
print('\n--------apply------------')
pool = multiprocessing.Pool(processes=4)
results = []
for i in range(10):
msg = 'hello world %d' % i
result = pool.apply(func, (msg,))
results.append(result)
print('apply: 堵塞') # 执行完func才执行该句
pool.close()
pool.join() # join语句要放在close之后
print(results) # map
print('\n--------map------------')
args = [1, 2, 4, 5, 7, 8]
pool = multiprocessing.Pool(processes=5)
return_data = pool.map(func, args)
print('堵塞') # 执行完func才执行该句
pool.close()
pool.join() # join语句要放在close之后
print(return_data) # map_async
print('\n--------map_async------------')
pool = multiprocessing.Pool(processes=5)
result = pool.map_async(func, args)
print('ready: ', result.ready())
print('不堵塞')
result.wait() # 等待所有进程函数执行完毕 if result.ready(): # 进程函数是否已经启动了
if result.successful(): # 进程函数是否执行成功
print(result.get()) # 进程函数返回值
线程池:
# -*- coding: utf-8 -*- from multiprocessing.dummy import Pool as ThreadPool
import time def fun(msg):
print('msg: ', msg)
time.sleep(1)
print('********')
return 'fun_return %s' % msg # map_async
print('\n------map_async-------')
arg = [1, 2, 10, 11, 18]
async_pool = ThreadPool(processes=4)
result = async_pool.map_async(fun, arg)
print(result.ready()) # 线程函数是否已经启动了
print('map_async: 不堵塞')
result.wait() # 等待所有线程函数执行完毕
print('after wait')
if result.ready(): # 线程函数是否已经启动了
if result.successful(): # 线程函数是否执行成功
print(result.get()) # 线程函数返回值 # map
print('\n------map-------')
arg = [3, 5, 11, 19, 12]
pool = ThreadPool(processes=3)
return_list = pool.map(fun, arg)
print('map: 堵塞')
pool.close()
pool.join()
print(return_list) # apply_async
print('\n------apply_async-------')
async_pool = ThreadPool(processes=4)
results =[]
for i in range(5):
msg = 'msg: %d' % i
result = async_pool.apply_async(fun, (msg, ))
results.append(result) print('apply_async: 不堵塞')
# async_pool.close()
# async_pool.join()
for i in results:
i.wait() # 等待线程函数执行完毕 for i in results:
if i.ready(): # 线程函数是否已经启动了
if i.successful(): # 线程函数是否执行成功
print(i.get()) # 线程函数返回值 # apply
print('\n------apply-------')
pool = ThreadPool(processes=4)
results =[]
for i in range(5):
msg = 'msg: %d' % i
result = pool.apply(fun, (msg, ))
results.append(result) print('apply: 堵塞')
print(results)
计算多的用多进程
io多的用多线程
python进程池multiprocessing.Pool和线程池multiprocessing.dummy.Pool实例的更多相关文章
- python第十一天-----补:线程池
低版本: #!/usr/bin/env python import threading import time import queue class TreadPool: ""&q ...
- python(13)多线程:线程池,threading
python 多进程:多进程 先上代码: pool = threadpool.ThreadPool(10) #建立线程池,控制线程数量为10 reqs = threadpool.makeRequest ...
- java多线程系类:JUC线程池:03之线程池原理(二)(转)
概要 在前面一章"Java多线程系列--"JUC线程池"02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包 ...
- java多线程系类:JUC线程池:01之线程池架构
概要 前面分别介绍了"Java多线程基础"."JUC原子类"和"JUC锁".本章介绍JUC的最后一部分的内容--线程池.内容包括:线程池架构 ...
- (转)WebSphere 中池资源调优 - 线程池、连接池和 ORB
WebSphere 中池资源调优 - 线程池.连接池和 ORB 来自:https://www.ibm.com/developerworks/cn/websphere/library/techartic ...
- 线程池;java的线程池的实现原理;适用于频繁互动(如电商网站)
线程池是一种多线程处理形式,处理过程中将任务加入到队列,然后在创建线程后自己主动启动这些任务.线程池线程都是后台线程.每一个线程都使用默认的堆栈大小,以默认的优先级执行.并处于多线程单元中. 假设某个 ...
- java多线程系类:JUC线程池:02之线程池原理(一)
在上一章"Java多线程系列--"JUC线程池"01之 线程池架构"中,我们了解了线程池的架构.线程池的实现类是ThreadPoolExecutor类.本章,我 ...
- java多线程、线程池及Spring配置线程池详解
1.java中为什么要使用多线程使用多线程,可以把一些大任务分解成多个小任务来执行,多个小任务之间互不影像,同时进行,这样,充分利用了cpu资源.2.java中简单的实现多线程的方式 继承Thread ...
- juc线程池原理(四): 线程池状态介绍
<Thread之一:线程生命周期及五种状态> <juc线程池原理(四): 线程池状态介绍> 线程有5种状态:新建状态,就绪状态,运行状态,阻塞状态,死亡状态.线程池也有5种状态 ...
- 你创建线程池最好分为两种线程池,io密集型线程池,或者cpu密集型线程池
你创建线程池最好分为两种线程池,io密集型线程池,或者cpu密集型线程池. 否则,如果只用一个线程池的话,不管是iO密集的线程,或者cpu消耗大的都放在同一个线程池的话,会发生线程池被撑满的情况
随机推荐
- Oracle day04 DML_事务_序列_视图_数据类型_DDL
DMLinsert关键字作用:往表中插入一条(多条)数据 语法1:元祖值式的插入语法1: insert into tablename(column1,column2,...,columnN) valu ...
- Java学习笔记之——线程的生命周期、线程同步
一. 线程的生命周期 新建(new Thrad):创建线程后,可以设置各个属性值,即启动前 设置 就绪(Runnable):已经启动,等待CPU调动 运行(Running):正在被CPU调度 阻塞(B ...
- 关于火狐和IE下href="javascript:void(0)"兼容性的问题
今天在开发中发现,使用如下方式的链接.在Chrome中点击后行为符合预期,但在IE下会新开标签卡(根据参考资料,Firefox中有相同问题). 经过排查,发现是href="javascrip ...
- 都2019年了,还问GET和POST的区别
摘要: 对比GET与POST. 原文:都9102年了,还问GET和POST的区别 作者:程淇铭 Fundebug经授权转载,版权归原作者所有. 1. 前言 最近看了一些同学的面经,发现无论什么技术岗位 ...
- es6的let,const
1.es6 新增的let const 命令 let用来定义一个局部变量,故名思意就是只在当前代码块可用 1.1 let 声明的变量不存在变量提升(var 声明的变量存在变量提升)且代码块内 暂时性死区 ...
- gitbook 入门教程之导出电子书
gitbook 既可以将源码文件单独输出,也可以仅输出单个文件,常见的导出电子书格式主要有三种(ePub, Mobi, PDF),而这三种格式都依赖于系统本身提供的 ebook-convert 工具. ...
- MySQL 处理海量数据时的一些优化查询速度方法
查询速度慢的原因 1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2.I/O 吞吐量小,形成了瓶颈效应. 3.没有创建计算列导致查询不优化. 4.内存不足 5.网络速度慢 6 ...
- VS2017在线安装包下载
VS2017个人免费版即社区官方下载地址为:https://download.microsoft.com/download/D/1/4/D142F7E7-4D7E-4F3B-A399-5BACA91E ...
- c/c++ gdb 调试带参数的程序
直接gdb pgname 参数1 这种方式,参数1是不会带到gdb里的 1,首先启动程序 gdb pgname 2,设置程序的参数 set args 参数1
- 【转载】IIC SPI UART串行总线
一.SPISPI(Serial Peripheral Interface,串行外设接口)是Motorola公司提出的一种同步串行数据传输标准,在很多器件中被广泛应用. 接口SPI接口经常被称为4线串行 ...