[ Codeforces Round #554 (Div. 2) C]
1 second
256 megabytes
standard input
standard output
Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.
Neko has two integers aa and bb. His goal is to find a non-negative integer kk such that the least common multiple of a+ka+k and b+kb+k is the smallest possible. If there are multiple optimal integers kk, he needs to choose the smallest one.
Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?
The only line contains two integers aa and bb (1≤a,b≤1091≤a,b≤109).
Print the smallest non-negative integer kk (k≥0k≥0) such that the lowest common multiple of a+ka+k and b+kb+k is the smallest possible.
If there are many possible integers kk giving the same value of the least common multiple, print the smallest one.
6 10
2
21 31
9
5 10
0
In the first test, one should choose k=2k=2, as the least common multiple of 6+26+2 and 10+210+2 is 2424, which is the smallest least common multiple possible.
题意:给出两个整数a,b,求出使(a+k)*(b+k)/gcd(a+k,b+k)的值最小的k,如果有多组答案求出最小的k
题解:gcd(a+k,b+k)=gcd(a-b,b+k),所以gcd(a+k,b+k)一定是(a-b)的一个因子,也就是说a+k一定是(a-b)的因子的倍数,即a+k=q*t,所以直接枚举(a-b)的因子q,求出相应的q*t,然后就可以根据k=q*t-a求出k,然后就可以求出最小的(a+k)*(b+k)/gcd(a+k,b+k)了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<vector>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
#define debug(x) cout<< #x <<" is "<<x<<endl;
int gcd(ll x,ll y){
if(y==)return x;
return gcd(y,x%y);
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
if(n<m)swap(n,m);
ll xx=n-m;
ll ans=-;
ll ans0=;
for(ll i=;i*i<=xx;i++){
if(xx%i==){
ll y1=n/i;
if(n%i)y1++;
y1*=i;
y1-=n;
if((y1+n)*(y1+m)/gcd(y1+n,y1+m)<ans||ans==-){
ans=(y1+n)*(y1+m)/gcd(y1+n,y1+m);
ans0=y1;
}
else if((y1+n)*(y1+m)/gcd(y1+n,y1+m)==ans&&y1<ans0){
ans0=y1;
}
ll y2=n/(xx/i);
if(n%(xx/i))y2++;
y2*=(xx/i);
y2-=n;
if((y2+n)*(y2+m)/gcd(y2+n,y2+m)<ans||ans==-){
ans=(y2+n)*(y2+m)/gcd(y2+n,y2+m);
ans0=y2;
}
else if((y2+n)*(y2+m)/gcd(y2+n,y2+m)==ans&&y2<ans0){
ans0=y2;
}
}
}
printf("%lld\n",ans0);
return ;
}
[ Codeforces Round #554 (Div. 2) C]的更多相关文章
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
- Codeforces Round #554 (Div. 2) 1152B. Neko Performs Cat Furrier Transform
学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152B. Neko Performs Cat Furrier Transform 题目链接:"ht ...
- Codeforces Round #554 (Div. 2) 1152A - Neko Finds Grapes
学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152A - Neko Finds Grapes 题目链接:"https://codeforces. ...
- Codeforces Round #554 (Div. 2)-C(gcd应用)
题目链接:https://codeforces.com/contest/1152/problem/C 题意:给定a,b(<1e9).求使得lcm(a+k,b+k)最小的k,若有多个k,求最小的k ...
- Codeforces Round #554 (Div. 2) D 贪心 + 记忆化搜索
https://codeforces.com/contest/1152/problem/D 题意 给你一个n代表合法括号序列的长度一半,一颗有所有合法括号序列构成的字典树上,选择最大的边集,边集的边没 ...
- Codeforces Round #554 (Div. 2) C 数论
https://codeforces.com/contest/1152/problem/C 题意 a和b,找到k,使得lcm(a+k,b+k)最小(a,b:1e9) 题解 设gcd=gcd(a+k,b ...
- Codeforces Round #554 (Div. 2) C.Neko does Maths (gcd的运用)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0&l ...
- CodeForces Round #554 Div.2
A. Neko Finds Grapes 代码: #include <bits/stdc++.h> using namespace std; ; int N, M; int a[maxn] ...
- Codeforces Round #554 (Div. 2)自闭记
A 签到 #include<bits/stdc++.h> using namespace std; ],t[],ans; int main() { scanf("%d%d&quo ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
随机推荐
- spring为什么推荐使用构造器注入
一.前言 项目中遇到一个问题:项目启动完成前,在A类中注入B类,并调用B类的某个方法. 那么调用B类的这个方法写在哪里呢,我选择写到构造器里,但是构造器先于Spring注入执行,那么执行构造器时, ...
- # -*- coding: utf-8 -*-
-- coding: utf-8 -- import scrapy from jobscrawler_qianchengwuyou.items import JobscrawlerQianchengw ...
- C++对象模型复习
本文写于2017-02-24,从老账号迁移到本账号,原文地址:https://i.cnblogs.com/EditPosts.aspx?postid=6440685 一:对象模型 C++面向对象的实现 ...
- hosts 添加主机和ip映射
背景:在服务器搭建环境时,迁移项目后,停止服务出现以下问题. 原因:项目停止或启动找不到映射名称或服务. 解决:修改hosts文件.hosts文件地址 /etc/hosts 添加主机和 ...
- cookie和sesssion
一.cookie cookie和session都可以暂时保存在多个页面中使用的变量,但是它们有本质的差别. cookie存放在客户端浏览器中,session保存在服务器上.它们之间的联系是sessio ...
- yarn web ui 参数详解
我们经常使用yarn调度,但是我们是否对调度队列显示参数真正了解呢? 下面我们来一一看看这些参数都是做什么用的,代表什么意思 hadoop是通过队列管理集群资源,翻开集群Web UI,找到Sc ...
- 原型图 ER 8.0的注册码
axuer8.0注册码Licensee:米 业成 (STUDENT)Key:nFmqBBvEqdvbiUjy8NZiyWiRSg3yO+PtZ8c9wdwxWse4WprphvSu9sohAdpNnJ ...
- 闪付卡(QuickPass)隐私泄露原理
0×00 前言 说到闪付卡,首先要从EMV开始,EMV是由Europay,MasterCard和VISA制定的基于IC卡的支付标准规范.目前基于EMV卡的非接触式支付的实现有三个:VISA的payWa ...
- dos3章
FOR命令中有一些变量,他们的用法许多新手朋友还不太了解,今天给大家讲解他们的用法! 先把FOR的变量全部列出来: ~I - 删除任何引号("),扩展 %I %~f ...
- 29.求3x3的整数矩阵对角线元素之和
#include <stdio.h> #include <stdlib.h> int main() { ,a[][]; ;i<;i++) { ;j<;j++) sc ...