试计算电流强度为 $I$ 的无限长的直导线所产生的磁场的磁感强度.

解答: 设 $P$ 到直线的距离为 $r$, 垂足为 $P_0$, 则 ${\bf B}(P)$ 的方向为 ${\bf I}\times {\bf r}_{P_0P}$, 大小为 $$\beex \bea {\bf B}(P)&=\cfrac{\mu_0}{4\pi}\int_{-\infty}^{+\infty} \cfrac{|I\rd{\bf x}\times{\bf r}_{xP}|}{r_{xP}^3}\\ &=\cfrac{\mu_0}{4\pi} \int_{-\infty}^{+\infty} \cfrac{I}{x^2+r^2} \cfrac{r}{\sqrt{x^2+r^2}}\rd x\\ &=\cfrac{2\mu_0Ir}{4\pi}\int_0^\infty \cfrac{1}{(x^2+r^2)^\frac{3}{2}}\rd x\\ &=\cfrac{2\mu_0Ir}{4\pi}\cdot \cfrac{1}{r^2}\\ &=\cfrac{\mu_0I}{2\pi r}. \eea \eeex$$ 另外, 你也可以直接由 Amp\'ere 定理证明: $$\bex B\cdot 2\pi r=\mu_0I\ra B=\cfrac{\mu_0I}{2\pi r}. \eex$$

[物理学与PDEs]第1章习题6 无限长载流直线的磁场的更多相关文章

  1. [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势

    设有一均匀分布着电荷的无限长直线, 其上的电荷线密度 (即单位长度上的电荷量) 为 $\sigma$. 试求该直线所形成的电场的电场强度及电势. 解答: 设空间上点 $P$ 到直线的距离为 $r$, ...

  2. [物理学与PDEs]第3章习题1 只有一个非零分量的磁场

    设磁场 ${\bf H}$ 只有一个非零分量, 试证明 $$\bex ({\bf H}\cdot\n){\bf H}={\bf 0}. \eex$$ 证明: 不妨设 ${\bf H}=(0,0,H_3 ...

  3. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  4. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  5. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  6. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  7. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  8. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

  9. [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程

    设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...

随机推荐

  1. 初步了解.net

    一..net和C#是什么关系 .net是一个程序运行的平台,它是c#,vb,F#等程序运行的平台,为这些语言提供基础类库.公共语言运行时(CLR)等相关支持. C#是支持.net的一种编程语言..ne ...

  2. java格式化

    http://tool.oschina.net/apidocs/apidoc?api=jdk-zh https://www.jianshu.com/p/c8f16cab35e1# 参考官方的 api说 ...

  3. 【English 】20190319

     BOKO鼻子['boʊkoʊ] pores毛孔['pɔ:z] cute漂亮可爱[kjut] DEKO-BOKO pores don't make a girl cute! ideal最理想的[aɪˈ ...

  4. HBase 数据模型

    在HBase中,数据是存储在有行有列的表格中.这是与关系型数据库重复的术语,并不是有用的类比.相反,HBase可以被认为是一个多维度的映射. HBase数据模型术语 Table(表格) 一个HBase ...

  5. 如何在查看docker container内进程信息,与宿主机上进程信息的映射关系

    docker container内运行的进程,在宿主机上,通过ps也是能够查到的,但是在不熟悉命令的时候,无法快速找到他们的关系. 这里科普一个基础命令 docker top 1. 找到容器的id d ...

  6. consul 搭建

    windows 1. 下载consul https://www.consul.io/downloads.html 2. 解压至consul_1.4.2 3.配置环境变量 path下新增D:\work\ ...

  7. bat——批量删除文件文件夹

    bat批处理,在工作中会带来很多便利. 例如:想删除多个文件夹内的文件夹“Quality”及其子文件 同时删除所有Cyc*文件夹内的所有R00*.tif文件 则可如下操作 先建立父bat文件run_d ...

  8. leetcode 169. Majority Element 、229. Majority Element II

    169. Majority Element 求超过数组个数一半的数 可以使用hash解决,时间复杂度为O(n),但空间复杂度也为O(n) class Solution { public: int ma ...

  9. matlab读取csv文件数据并绘图

    circle.m(画二维圆的函数) %该函数是画二维圆圈,输入圆心坐标和半径%rectangle()函数参数‘linewidth’修饰曲线的宽度%'edgecolor','r',edgecolor表示 ...

  10. eclipse上配置svn

    eclipse里安装SVN插件,一般来说,有两种方式: 直接下载SVN插件,将其解压到eclipse的对应目录里 使用eclipse 里Help菜单的“Install New Software”,通过 ...