python 实现简单卷积网络框架
第一步定义卷积核类:
class Filter(object):
# 滤波器类 对卷积核进行初始化
def __init__(self,width,height,depth):
# initialize the filter parameter
self.weights=np.random.uniform(-1e-4,1e-4,(depth,height,width))
self.bias=0
self.weights_grad=np.zeros(self.weights.shape)
self.bias_grad=0
def get_weights(self):
return self.weights
def get_bias(self):
return self.bias
def update_weight(self,learning_rate):
self.weights-=self.weights_grad*learning_rate
self.bias-=self.bias_grad*learning_rate
定义卷积层
def conv(input_array,kernel_array,output_array,stride,bias):
channel_number=input_array.ndim
output_width=output_array.shape[1]
output_height=output_array.shape[0]
kernel_width=kernel_array.shape[-1]
kernel_height=kernel_array.shape[-2]
for i in range(output_height):
for j in range(output_width):
# get_patch 得到i,j位置对应的图像的块
output_array[i][j]=(get_patch(input_array,i,j,kernel_width,kernel_height,stride)*kernel_array).sum()+bias
定义padding 函数:根据扩展的大小进行0填充
def padding(input_array, zero_padding):
if zero_padding == 0:
return input_array
else:
if input_array.ndim == 3:
input_width = input_array.shape[2]
input_height = input_array.shape[1]
input_depth = input_array.shape[0]
padded_array = np.zeros((input_depth, input_height + 2 * zero_padding,
input_width + 2 * zero_padding))
padded_array[:, zero_padding:zero_padding + input_height,
zero_padding:zero_padding + input_width] = input_array elif input_array.ndim == 2:
input_width = input_array.shape[1]
input_height = input_array.shape[0]
padded_array = np.zeros((input_height + 2 * zero_padding, input_width + 2 * zero_padding))
padded_array[zero_padding:zero_padding + input_width,
zero_padding:zero_padding + input_height] = input_array
return padded_array
定义卷积类:
def calculate_output_size(input_size,filter_size,zero_padding,stride):
return (input_size-filter_size+2*zero_padding)/stride+1
class ConvLayer(object):
def __init__(self,input_width,input_height,channel_number,
filter_width,filter_height,filter_number,zero_padding,stride,
activator,learning_rate):
self.input_width=input_width
self.input_height=input_height
self.channel_number=channel_number
self.filter_width=filter_width
self.filter_height=filter_height
self.filter_number=filter_number
self.zero_padding=zero_padding
self.stride=stride
# 根据(f-w+2p)/2+1
self.outpu_width=ConvLayer.calculate_output_size(self.input_width,
filter_width,zero_padding,stride)
self.output_height=ConvLayer.calculate_output_size(self.input_height,
filter_height,zero_padding,
stride)
# 得到padding 后的图像
self.output_array=np.zeros(self.filter_number,self.output_width,self.output_height)
# the output of the convolution
# 初始化filters
self.filters=[]
# initialize filters
for i in range(filter_number):
self.filters.append(Filter(filter_width,filter_height,self.channel_number))
self.activator=activator
self.learning_rate=learning_rate
# 对 灵敏度图进行扩充
def expand_sentivity_map(self,sensitivity_array):
depth=sensitivity_array.shape[0]
expanded_width=(self.input_width-self.filter_width+2*self.zero_padding+1)
expanded_height=(self.input_height-self.filter_height+2*self.zero_padding+1)
expand_array=np.zeros((depth,expanded_height,expanded_width))
for i in range(self.output_height):
for j in range(self.output_width):
i_pos=i*self.stride
j_pos=j*self.stride
expand_array[:,i_pos,j_pos]=sensitivity_array[:,i,j]
return expand_array
# 创建灵敏度矩阵
def create_delta_array(self):
return np.zeros((self.channnel_number,self.input_height,self.input_width))
# 前向传递
def forward(self,input_array):
self.input_array=input_array
# first pad image to the size needed
self.padded_input_array=padding(input_array,self.zero_padding)
for f in range(self.filter_number):
filter=self.filters[f]
conv(self.paded_input_array,filter.get_weights(),filter.get_bias())
element_wise_op(self.output_array,self.acitator.forward)
# 反向传递
def bp_sensitivity_map(self, sensitivity_array,activator):
# padding sensitivity map
expanded_array=self.expand_sentivity_map(sensitivity_array)
expanded_width=expanded_array.shape[2]
zp=(self.input_width+self.filter_width-1-expanded_width)/2
padded_array=padding(expanded_array,zp)
self.delta_array=self.create_delta_array()
for f in range(self.filter_number):
filter=self.filter[f]
filpped_weights=np.array(map(lambda i: np.rot90(i,2),filter.get_weights()))
delta_array=self.create_delta_array()
for d in range(delta_array.shape[0])
conv(padded_array[f],filpped_weights[d],delta_array[d],1,0)
self.delta_array+=delta_array
derivative_array=np.array(self.input_array)
element_wise_op(derivative_array,activator.backward)
self.delta_array*=derivative_array
# 参数的梯度是 输入乘以灵敏度矩阵
def bp_gradient(self,sensitivity_array):
expanded_array=self.expand_sensitivity_map(sensitivity_array)
for f in range(self.filter_number):
filter=self.filter[f]
for d in range(filter.weights.shape[0]):
conv(self.padded_input_array[d],expanded_array[f],filter.weights_grad[d],1,0)
filter.bias_grad=expanded_array[f].sum()
# 对参数进行update
def update(self):
for filter in self.filters:
filter.update(self.learning_rate)
python 实现简单卷积网络框架的更多相关文章
- 学习笔记TF028:实现简单卷积网络
载入MNIST数据集.创建默认Interactive Session. 初始化函数,权重制造随机噪声打破完全对称.截断正态分布噪声,标准差设0.1.ReLU,偏置加小正值(0.1),避免死亡节点(de ...
- [记录]python的简单协程框架(回调+时间循环+select)
# -*- coding: utf-8 -*- # @Time : 2018/12/15 18:55 # @File : coroutine.py #一个简单的 Coroutine 框架 import ...
- Python学习之==>Socket网络编程
一.计算机网络 多台独立的计算机通过网络通信设备连接起来的网络.实现资源共享和数据传递.在同一台电脑上可以将D盘上的一个文件传到C盘,但如果想从一台电脑传一个文件到另外一台电脑上就要通过计算机网络 二 ...
- uvloop —— 超级快的 Python 异步网络框架
简短介绍 asyncio是遵循Python标准库的一个异步 I/O框架.在这篇文章里,我将介绍 uvloop: 可以完整替代asyncio事件循环.uvloop是用Cython写的,基于 libuv. ...
- Python实现简单框架及三大框架对比
手撸web框架 简单的请求响应实现 要实现最简单的web框架,首先要对网络熟悉,首先HTTP协议是应用层的协议,只要我们给数据加上HTTP格式的响应报头,我们的数据就能基于socket进行实现了 im ...
- python网络框架Twisted
什么是Twisted Twisted是一个用python语言写的事件驱动网络框架,它支持很多种协议,包括UDP,TCP,TLS和其他应用层协议,比如HTTP,SMTP,NNTM,IRC,XMPP/Ja ...
- 用Python写一个简单的Web框架
一.概述 二.从demo_app开始 三.WSGI中的application 四.区分URL 五.重构 1.正则匹配URL 2.DRY 3.抽象出框架 六.参考 一.概述 在Python中,WSGI( ...
- iOS开发网络篇—简单介绍ASI框架的使用
iOS开发网络篇—简单介绍ASI框架的使用 说明:本文主要介绍网络编程中常用框架ASI的简单使用. 一.ASI简单介绍 ASI:全称是ASIHTTPRequest,外号“HTTP终结者”,功能十分强大 ...
- Android中android-async-http开源网络框架的简单使用
android-async-http开源网络框架是专门针对Android在Apache的基础上构建的异步且基于回调的http client.所有的请求全在UI线程之外发生,而callback发生在创建 ...
随机推荐
- JavaScript 函数闭包的应用
一.模仿块级作用域 JavaScript 没有块级作用域的概念,那么可以模拟像java中将很多变量私有化封装起来,保护数据,防止数据泄漏,封装细节,这样安全性和可控性更高 function box(c ...
- laravel学习笔记二
代码编写提示工具
- 10-ajax技术简介
一.ajax是什么?是网页中的异步刷新技术.其核心是js+xml二.执行过程1.js的核心对象XMLHttpRequest是一个具备像后台发送请求的一个对象2.XMLHttpRequest可以异步发送 ...
- ESP8266产品ID
ESP.getChipId() https://github.com/espressif/arduino-esp32/blob/master/libraries/ESP32/examples/Chip ...
- 19 python初学(os 模块,sys 模块,hashlib 模块)
os 模块: # _author: lily # _date: 2019/1/13 import os print(os.getcwd()) # 得到当前的工作目录 # print(os.chdir( ...
- python字符串replace失效问题
python字符串replace替换无效 背景 今天想把一个列表中符合条件的元素中 替换部分字符串, 发现怎么替换,改元素还是没有改变,本以为是内存引用的问题后来发现并不然. 经查阅解决 在Pytho ...
- C# — 创建Windows服务进阶版
1.新建一个Windows服务项目:FaceService 2.将service1.cs重命名为FaceService.cs,然后在主界面右击鼠标,选择添加安装程序 3.鼠标选择serviceInst ...
- .net后台以post方式调用http接口[转]
string strResult = ""; try { HttpWebRequest myRequest = (HttpWebRequest)WebRequest.Create( ...
- 在Linux上安装ant环境
原文链接:http://www.cnblogs.com/sell/archive/2013/07/24/3210198.html 1.从http://ant.apache.org 上下载tar.gz版 ...
- Android——具有边框的Textview
我们可以看见很多类似瀑布流的分类: 通过边框进行选择,那么这个边框是怎么变成的呢? 我们可以通过添加背景图,不过有更加简单的,如下: 我们在drawable文件中编写一个shape, <?xml ...