package ML.collaborativeFilltering;

 import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaDoubleRDD;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.recommendation.ALS;
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
import org.apache.spark.mllib.recommendation.Rating;
import scala.Tuple2; /**
* TODO
*
* @ClassName: example
* @author: DingH
* @since: 2019/4/10 16:03
*/
public class example {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Java Collaborative Filtering Example");
JavaSparkContext jsc = new JavaSparkContext(conf); // Load and parse the data
String path = "D:\\IdeaProjects\\SimpleApp\\src\\main\\resources\\data\\mllib\\als\\test.data";
JavaRDD<String> data = jsc.textFile(path);
JavaRDD<Rating> ratings = data.map(new Function<String, Rating>() {
public Rating call(String s) {
String[] sarray = s.split(",");
return new Rating(Integer.parseInt(sarray[0]), Integer.parseInt(sarray[1]), Double.parseDouble(sarray[2]));
}
}
);
int ranks = 10;
int numIterations = 10;
MatrixFactorizationModel model = ALS.train(ratings.rdd(), ranks, numIterations); JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(new Function<Rating, Tuple2<Object, Object>>() {
public Tuple2<Object, Object> call(Rating r) {
return new Tuple2<Object, Object>(r.user(), r.product());
}
}
);
JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
}
}
)); JavaRDD<Tuple2<Double, Double>> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
}
}
)).join(predictions).values(); double MSE = JavaDoubleRDD.fromRDD(ratesAndPreds.map(
new Function<Tuple2<Double, Double>, Object>() {
public Object call(Tuple2<Double, Double> pair) {
Double err = pair._1() - pair._2();
return err * err;
}
}
).rdd()).mean(); System.out.println("Mean Squared Error = " + MSE); }
}

spark MLlib collaborativeFilltering学习的更多相关文章

  1. Spark MLlib知识点学习整理

    MLlib的设计原理:把数据以RDD的形式表示,然后在分布式数据集上调用各种算法.MLlib就是RDD上一系列可供调用的函数的集合. 操作步骤: 1.用字符串RDD来表示信息. 2.运行MLlib中的 ...

  2. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  3. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...

  4. spark MLLib的基础统计部分学习

    参考学习链接:http://www.itnose.net/detail/6269425.html 机器学习相关算法,建议初学者去看看斯坦福的机器学习课程视频:http://open.163.com/s ...

  5. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...

  6. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...

  7. Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2

    Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...

  8. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...

  9. spark MLlib Classification and regression 学习

    二分类:SVMs,logistic regression,decision trees,random forests,gradient-boosted trees,naive Bayes 多分类:  ...

随机推荐

  1. EventBus 线程切换原理

    主要问题其实只有两个,其一:如何判断当前发送事件的线程是否是主线程:其二:如何在接收事件时指定线程并执行: 一个一个来看. 1.如何判断是否在主线程发送 EventBus在初始化的时候会初始化一个Ma ...

  2. apache Storm 学习笔记

    Storm流之FieldGrouping字段分组: https://blog.csdn.net/Simon_09010817/article/details/80092080

  3. mybatis返回结果封装为map的探索

    需求 根据课程id 列表,查询每个课程id的总数,放到一个map里 最简单的就是循环遍历,每一个都查询一次网上说mybatis可以返回Map 和 List<Map>两种类型 尝试 直接返回 ...

  4. opencv 图片位移

    import cv2 as cv import numpy as np # 图片移位 img = cv.imread('../images/moon.jpg', flags=1) # flags=1读 ...

  5. 关于try catch finally 三者之间的关系(JDK 1.8)

    话不多说 线上代码 package System; import java.util.Scanner; /** * * @author chris * */ public class TryCathf ...

  6. java io系列17之 System.out.println("hello world")原理

    我们初学java的第一个程序是"hello world" public class HelloWorld { public static void main(String[] ar ...

  7. python学习03

    字符串的基本使用 1.字符编码集 ASCII编码:外国人常用的大小写英文字母.数字和一些符号,一共127个字符,用1个字节(byte)可以涵盖完,也就是8个位,它将序列中的每个字节理解为一个字符. U ...

  8. -bash: Chmod: command not found

    是增加该文件的所有者拥有运行权限 如果所有者是root ,还要加sudo chmod u+x drlinuxclient.bin (sudo) chmod u+x drlinuxclient.bin ...

  9. UDP单播,广播,多播

  10. mac office2016