spark MLlib collaborativeFilltering学习
package ML.collaborativeFilltering; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaDoubleRDD;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.recommendation.ALS;
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
import org.apache.spark.mllib.recommendation.Rating;
import scala.Tuple2; /**
* TODO
*
* @ClassName: example
* @author: DingH
* @since: 2019/4/10 16:03
*/
public class example {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Java Collaborative Filtering Example");
JavaSparkContext jsc = new JavaSparkContext(conf); // Load and parse the data
String path = "D:\\IdeaProjects\\SimpleApp\\src\\main\\resources\\data\\mllib\\als\\test.data";
JavaRDD<String> data = jsc.textFile(path);
JavaRDD<Rating> ratings = data.map(new Function<String, Rating>() {
public Rating call(String s) {
String[] sarray = s.split(",");
return new Rating(Integer.parseInt(sarray[0]), Integer.parseInt(sarray[1]), Double.parseDouble(sarray[2]));
}
}
);
int ranks = 10;
int numIterations = 10;
MatrixFactorizationModel model = ALS.train(ratings.rdd(), ranks, numIterations); JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(new Function<Rating, Tuple2<Object, Object>>() {
public Tuple2<Object, Object> call(Rating r) {
return new Tuple2<Object, Object>(r.user(), r.product());
}
}
);
JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
}
}
)); JavaRDD<Tuple2<Double, Double>> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
}
}
)).join(predictions).values(); double MSE = JavaDoubleRDD.fromRDD(ratesAndPreds.map(
new Function<Tuple2<Double, Double>, Object>() {
public Object call(Tuple2<Double, Double> pair) {
Double err = pair._1() - pair._2();
return err * err;
}
}
).rdd()).mean(); System.out.println("Mean Squared Error = " + MSE); }
}
spark MLlib collaborativeFilltering学习的更多相关文章
- Spark MLlib知识点学习整理
MLlib的设计原理:把数据以RDD的形式表示,然后在分布式数据集上调用各种算法.MLlib就是RDD上一系列可供调用的函数的集合. 操作步骤: 1.用字符串RDD来表示信息. 2.运行MLlib中的 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...
- spark MLLib的基础统计部分学习
参考学习链接:http://www.itnose.net/detail/6269425.html 机器学习相关算法,建议初学者去看看斯坦福的机器学习课程视频:http://open.163.com/s ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...
- spark MLlib Classification and regression 学习
二分类:SVMs,logistic regression,decision trees,random forests,gradient-boosted trees,naive Bayes 多分类: ...
随机推荐
- 网络基础之HTTP、TCP/IP、Socket
一.HTTP相关 https://www.cnblogs.com/sunny-sl/p/6529830.html https://www.cnblogs.com/ranyonsue/p/5984001 ...
- python之函数初识
一.函数的初识1.如何定义函数:def 函数名(): 代码... 例如:def my_len(): l = [1, 2, 3, 4] count = 0 for i in l: count += 1 ...
- Server酱
功能:从服务器推报警和日志到手机上的工具 使用: 发送消息非常简单,只需要向以下URL发一个GET或者POST请求: https://sc.ftqq.com/SCU34756Ta63843ce61a3 ...
- jatoolsprinter web打印控件直接打印不弹出
1.功能 主要是实现页面点击按钮,不弹窗,直接打印. 可以指定某个打印机打印 可以使用默认打印机打印 2.版本 主要有:免费版跟付费版 免费版官网:http://printfree.jatools.c ...
- 使用WebClient进行文件上传
注释部分为异步上传,几行代码就能搞定 public static bool Upload(string url, string path) { using (WebClient client = ne ...
- Numpy 系列(八)- 广播机制
什么是广播 我们都知道,Numpy中的基本运算(加.减.乘.除.求余等等)都是元素级别的,但是这仅仅局限于两个数组的形状相同的情况下. 可是大家又会发现,如果让一个数组加1的话,结果时整个数组的结果都 ...
- 金融量化分析【day112】:量化平台的使用-初始化函数
一.set_benchmark - 设置基准 1.实现代码 # 导入函数库 import jqdata #初始化函数,设定基准等等 def initialize(context): set_bench ...
- 金融量化分析【day112】:双均线策略
一.双均线策略 1.什么是双均线策略? 2.实现代码 def initialize(context): set_benchmark('601318.XSHG') set_option('use_rea ...
- SpringBoot系列: Web应用鉴权思路
==============================web 项目鉴权============================== 主要的鉴权方式有:1. 用户名/密码鉴权, 然后通过 Sess ...
- ElasticSearch评分分析 explian 解释和一些查询理解
ElasticSearch评分分析 explian 解释和一些查询理解 按照es-ik分析器安装了ik分词器.创建索引:PUT /index_ik_test.索引包含2个字段:content和nick ...