import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
import torch.utils.data as Data
import torchvision
from mpl_toolkits.mplot3d import Axes3D #画3D图
from matplotlib import cm
# Hyper Parameters
EPOCH=10
BATCH_SIZE=64
LR = 0.005 # learning rate
DOWNLOAD_MNIST=False
N_TEST_IMG=5 train_data=torchvision.datasets.MNIST(
root='./mnist/',
train=True,
transform=torchvision.transforms.ToTensor(),
download=DOWNLOAD_MNIST
) train_loader=Data.DataLoader(dataset=train_data,batch_size=BATCH_SIZE,shuffle=True) class AutoEncoder(nn.Module):
def __init__(self):
super(AutoEncoder, self).__init__() self.encoder = nn.Sequential(
nn.Linear(28 * 28, 128),
nn.Tanh(),
nn.Linear(128,64),
nn.Tanh(),
nn.Linear(64, 12),
# nn.Tanh(),
# nn.Linear(12, 3),
)
self.decoder=nn.Sequential(
# nn.Linear(3,12),
# nn.Tanh(),
nn.Linear(12, 64),
nn.Tanh(),
nn.Linear(64, 128),
nn.Tanh(),
nn.Linear(128, 28*28),
nn.Sigmoid() ) def forward(self, x ):
encoder=self.encoder(x)
decoder=self.decoder(encoder)
return encoder,decoder AutoEncoder = AutoEncoder()
# print(AutoEncoder) optimizer = torch.optim.Adam(AutoEncoder.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.MSELoss() f,a=plt.subplots(2,N_TEST_IMG,figsize=(5,2)) plt.ion() # continuously plot view_data=train_data.train_data[:N_TEST_IMG].view(-1,28*28).type(torch.FloatTensor)/255 for i in range(N_TEST_IMG):
a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray')
a[0][i].set_xticks(())
a[0][i].set_yticks(()) for epoch in range(EPOCH):
for step,(x,b_label) in enumerate(train_loader):
b_x=x.view(-1,28*28)
b_y=x.view(-1,28*28)
encoded, decoded = AutoEncoder(b_x)
loss=loss_func(decoded,b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step%100==0:
print('Epoch:|',epoch,'train loss:%0.4f'%loss.data.numpy())
_,decoded_data=AutoEncoder(view_data)
for i in range(N_TEST_IMG):
a[1][i].clear()
a[1][i].imshow(np.reshape(decoded.data.numpy()[i],(28,28)),cmap='gray')
a[1][i].set_xticks(())
a[1][i].set_yticks(())
plt.draw()
plt.pause(0.05)
plt.ioff()
plt.show() view_data=train_data.train_data[:200].view(-1,28*28).type(torch.FloatTensor)/255
encoded_data,_=AutoEncoder(view_data)
fig=plt.figure(2)
ax=Axes3D(fig)
X,Y,Z=encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
values=train_data.train_labels[:200].numpy()
for x,y,z ,s in zip(X,Y,Z,values):
c=cm.rainbow(int(255*s/9))
ax.text(x,y,z,s,backgroundcolor=c)
ax.set_xlim(X.min(),X.max())
ax.set_ylim(Y.min(),Y.max())
ax.set_zlim(Z.min(),Z.max())
plt.show()

选出五张图片做测试。

图像分为5*2显示,上面一行是原始图像,下面一行为编码和解码后的图像。

encode与decode的更多相关文章

  1. [LeetCode] Encode and Decode Strings 加码解码字符串

    Design an algorithm to encode a list of strings to a string. The encoded string is then sent over th ...

  2. 【python】python新手必碰到的问题---encode与decode,中文乱码[转]

    转自:http://blog.csdn.net/a921800467b/article/details/8579510 为什么会报错“UnicodeEncodeError:'ascii' codec ...

  3. LeetCode Encode and Decode Strings

    原题链接在这里:https://leetcode.com/problems/encode-and-decode-strings/ 题目: Design an algorithm to encode a ...

  4. Encode and Decode Strings

    Design an algorithm to encode a list of strings to a string. The encoded string is then sent over th ...

  5. encode和decode

    Python字符串的encode与decode研究心得乱码问题解决方法 为什么会报错“UnicodeEncodeError: 'ascii' codec can't encode characters ...

  6. 【python】浅谈encode和decode

    对于encode和decode,笔者也是根据自己的理解,有不对的地方还请多多指点. 编码的理解: 1.编码:utf-8,utf-16,gbk,gb2312,gb18030等,编码为了便于理解,可以把它 ...

  7. 271. Encode and Decode Strings

    题目: Design an algorithm to encode a list of strings to a string. The encoded string is then sent ove ...

  8. [LeetCode#271] Encode and Decode Strings

    Problem: Design an algorithm to encode a list of strings to a string. The encoded string is then sen ...

  9. Encode and Decode Strings 解答

    Question Design an algorithm to encode a list of strings to a string. The encoded string is then sen ...

  10. python encode和decode函数说明【转载】

    python encode和decode函数说明 字符串编码常用类型:utf-8,gb2312,cp936,gbk等. python中,我们使用decode()和encode()来进行解码和编码 在p ...

随机推荐

  1. Mysql数据库引擎介绍--转载

    引用博文链接:https:/www.cnblogs.com/zhangjinghe/p/7599988.html MYSQL数据库引擎区别详解 数据库引擎介绍 MySQL数据库引擎取决于MySQL在安 ...

  2. PHP九大接口视频教程( 支付宝,QQ,短信接口,微信接口开发, 支付宝即时到账接口开发三级分销全套)

    PHP九大接口视频教程(  支付宝,QQ,短信接口,微信接口开发, 支付宝即时到账接口开发三级分销全套) 需要的联系我:QQ: 1844912514 PHP九大接口视频教程(  支付宝,QQ,短信接口 ...

  3. javascript闭包以及闭包的作用

    什么是闭包?———>是一个函数,一个可以访问其他函数内部数据的函数. 栗子一: function foo() { var a = 1; } function fn() { console.log ...

  4. spring 方法验证参数

    1:实体使用 @Valid    使用 validation  类注解 2:String 使用 controller 添加 @Validated @NotBlank(message = "i ...

  5. vue 源代码创建tabs

    <ul class="tabs"> <li class="li-tab" v-for="(item,index) in tabsPa ...

  6. python3的字符串和字节

    Python3中内置类型bytes和str用法及byte和string之间各种编码转换 Python 3最重要的新特性大概要算是对文本和二进制数据作了更为清晰的区分.文本总是Unicode(16进制) ...

  7. java 中的引用数据类型

    字符串String 在java 中,字符串不是基本数据类型,而是String 类的对象,当我们创建一个字符串的时候,真的是要使用new 来调用String 构造函数 String str = new ...

  8. 抽奖大转盘 js代码

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. 关于TVWALL 通过AS300获取状态连接失败

    昨天晚会突然之间频繁出现tvwall视频软件,断开AS300管理软件的故障 发现AS300当中的cms服务进程,占用内存250M左右,一般情况下估计就是50M左右,增长了不少 无奈之下,只有重启AS3 ...

  10. easyui Datagrid 表格高度计算及自适应页面的实现

    因为页面上既要计算表格的高度,又要自适应浏览器大小,之前都都采用固定表格高度,这样就会导致不同的分辨率电脑上看起来表格高矮不一, 所以采用了计算网页高度和其他div 的高度之差作为表格的初始高度: H ...