iOS 加锁的方式
iOS多线程编程中,经常碰到多个线程访问共同的一个资源,在线程相互交互的情况下,需要一些同步措施,来保证线程之间交互的时候是安全的。下面我们一起看一下学一下iOS的几种常用的加锁方式,希望对大家有所帮助!!!
- @synchronized
- NSLock对象锁
- NSRecursiveLock递归锁
- NSConditionLock条件锁
- dispatch_semaphore 信号量实现加锁(也就是GCD)
- OSSpinLock 与 os_unfair_lock
- pthread_mutex
介绍与使用
1.@synchronized
@synchronized关键字加锁,互斥锁,性能较差不推荐在项目中使用。
@synchronized(这里添加一个OC对象,一般使用self) {
这里写要加锁的代码
}
注意点
.加锁的代码要尽量少
2.添加的OC对象必须在多个线程中都是同一个对象
3.它的优点是不需要显式的创建锁对象,便可以实现锁的机制。
4. @synchronized块会隐式的添加异常处理例程来保护代码,该处理例程会在异常抛出的时候就会自动 的释放互斥锁。如果不想让隐式的异常处理例程带来额外的开销,你可以考虑使用锁对象。
下面我们以一个最经典的例子:卖票
//设置票的数量为5
_tickets = ; //线程1
dispatch_async(self.concurrentQueue, ^{
[self saleTickets];
}); //线程2
dispatch_async(self.concurrentQueue, ^{
[self saleTickets];
}); - (void)saleTickets
{
while () {
@synchronized(self) {
[NSThread sleepForTimeInterval:];
if (_tickets > ) {
_tickets--;
NSLog(@"剩余票数= %ld, Thread:%@",_tickets,[NSThread currentThread]);
} else {
NSLog(@"票卖完了 Thread:%@",[NSThread currentThread]);
break;
}
}
}
}
2.NSLock
基本所有锁的接口都是通过NSLocking协议定义的,定义了lock和unlock方法,通过这些方法获取和释放锁。NSLock是对mutex普通锁的封装
下面还是以卖票的例子讲述一下。
//设置票的数量为5
_tickets = ; //创建锁
_mutexLock = [[NSLock alloc] init]; //线程1
dispatch_async(self.concurrentQueue, ^{
[self saleTickets];
}); //线程2
dispatch_async(self.concurrentQueue, ^{
[self saleTickets];
}); - (void)saleTickets
{ while () {
[NSThread sleepForTimeInterval:];
//加锁
[_mutexLock lock];
if (_tickets > ) {
_tickets--;
NSLog(@"剩余票数= %ld, Thread:%@",_tickets,[NSThread currentThread]);
} else {
NSLog(@"票卖完了 Thread:%@",[NSThread currentThread]);
break;
}
//解锁
[_mutexLock unlock];
}
}
3.NSRecursiveLock递归锁
使用锁比较容易犯的错误是在递归或者循环中造成死锁。
如下代码锁会被多次lock,造成自己被阻塞。
//创建锁
_mutexLock = [[NSLock alloc]init]; //线程1
dispatch_async(self.concurrentQueue, ^{
static void(^TestMethod)(int);
TestMethod = ^(int value)
{
[_mutexLock lock];
if (value > )
{
[NSThread sleepForTimeInterval:];
TestMethod(value--);
}
[_mutexLock unlock];
}; TestMethod();
});
如果把这个NSLock换成NSRecursiveLock,就可以解决问题。
NSRecursiveLock类定义的锁,可以在同一线程多次lock,不会造成死锁。
//创建锁
_rsLock = [[NSRecursiveLock alloc] init]; //线程1
dispatch_async(self.concurrentQueue, ^{
static void(^TestMethod)(int);
TestMethod = ^(int value)
{
[_rsLock lock];
if (value > )
{
[NSThread sleepForTimeInterval:];
TestMethod(value--);
}
[_rsLock unlock];
}; TestMethod();
});
4.NSConditionLock条件锁
NSMutableArray *products = [NSMutableArray array];
NSInteger HAS_DATA = ;
NSInteger NO_DATA = ;
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, ), ^{
while () {
[lock lockWhenCondition:NO_DATA];
[products addObject:[[NSObject alloc] init]];
NSLog(@"produce a product,总量:%zi",products.count);
[lock unlockWithCondition:HAS_DATA];
sleep();
}
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, ), ^{
while () {
NSLog(@"wait for product");
[lock lockWhenCondition:HAS_DATA];
[products removeObjectAtIndex:];
NSLog(@"custome a product");
[lock unlockWithCondition:NO_DATA];
}
});
在线程1中的加锁使用了lock,所以是不要条件的,也就锁住了。但在unlock的使用整型条件,它可以开启其他线程中正在等待钥匙的临界池,当线程1循环到一次的时候,打开了线程2的阻塞。
NSCoditionLock中lock,lockWhenCondition:与unlock,unlockWithCondition:是可以随意组合的,具体使用根据需求来区分。
NSCoditionLock 是对NSCodition的进一步封装,可以设置具体的条件值,而NSCodition是对mutex和cond的封装---看本篇博客7.3 条件锁
5.dispatch_semaphore信号量实现加锁
dispatch_semaphore_t signal = dispatch_semaphore_create();
dispatch_time_t overTime = dispatch_time(DISPATCH_TIME_NOW, * NSEC_PER_SEC);
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, ), ^{
dispatch_semaphore_wait(signal, overTime);
NSLog(@"需要线程同步的操作1 开始");
sleep();
NSLog(@"需要线程同步的操作1 结束");
dispatch_semaphore_signal(signal);
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, ), ^{
sleep();
dispatch_semaphore_wait(signal, overTime);
NSLog(@"需要线程同步的操作2");
dispatch_semaphore_signal(signal);
});
dispatch_semaphore是GCD用于同步的方式,与之相关的共有三个函数,dispatch_semaphore_wait,dispatch_semaphore_signal,dispatch_semaphore_create。
(1)dispatch_semaphore_create的声明为:
dispatch_semaphore_t dispatch_semaphore_create(long value);
传入的参数是long类型,输出一个dispatch_semaphore_t类型值为Value的信号量(value传入值不能小于0,否则会报错NULL)
(2)dispatch_semaphore_signal声明为下面:
long dispatch_semaphore_signal(dispatch_semaphore_t dsema);
这个方法会使dsema加1;
(3)dispatch_semaphore_wait的声明为下面:
long dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout);
这个方法会使dsema减1。
整个逻辑如下:
如果dsema信号量值为大于0,该函数所在线程就会继续执行下面的语句,并将信号量的减去1;如果dsema为0时,函数就会阻塞当前的线程,如果等待的期间发现dsema的值被dispatch_semaphore_signal加1了,并且该函数得到了信号量,那么继续向下执行,并将信号量减1,如果等待期间没有获得信号量或者值一直为0,那么等到timeout,所处的线程也会自动执行下面的代码。
dispatch_semaphore,当信号量为1时,可以作为锁使用。如果没有出现等待的情况,它的性能比pthread_mutex还要高,当如果有等待情况的时候,性能就会下降很多,相比OSSpinLock(暂不讲解),它的优势在于等待的时侯不会消耗CPU资源。
针对上面代码,发现如果超时时间overTime>2,可完成同步操作,反之,在线程1还没有执行完的情况下,此时超时了,将自动执行下面的代码。
上面代码执行结果:
-- ::52.324 SafeMultiThread[:] 需要线程同步的操作1 开始
-- ::52.325 SafeMultiThread[:] 需要线程同步的操作1 结束
-- ::52.326 SafeMultiThread[:] 需要线程同步的操作2
如果将overTime<2s的时候,执行为
-- ::52.049 SafeMultiThread[:] 需要线程同步的操作1 开始
-- ::52.554 SafeMultiThread[:] 需要线程同步的操作2
-- ::52.054 SafeMultiThread[:] 需要线程同步的操作1 结束
6.OSSpinLock自旋锁与os_unfair_lock
6.1 OSSpinLock
OSSpinLock叫做“自旋锁”,自旋锁的线程会处于忙等(busy-wait)状态,一直占用着CPU资源
但是目前是不再安全了,在iOS 10之后弃用啦,如果等待锁的线程优先级较高,它会一直占用着CPU资源,优先级低的线程就无法释放锁。
在使用的过程中需要导入头文件#import <libkern/OSAtomic.h>
//初始化
OSSpinLock lock = OS_SPINLOCK_INIT;
//尝试加锁(如果需要等待就不加锁,直接返回false;如果不需要等待就加锁,返回True)
bool result = OSSpinLockTry(&lock);
//加锁
OSSpinLockLock(&lock);
//解锁
OSSpinLockUnlock(&lock)
6.2 os_unfair_lock互斥锁
os_unfair_lock用于取代不安全的OSSpinLock,从iOS10开始才支持。从底层调用看,等待os_unfair_lock锁的线程会处于休眠状态,并非忙等
os_unfair_lock需要导入头文件#import<os/lock.h>
//初始化
os_unfair_lock lock = OS_UNFAIR_LOCK_INIT;
//尝试加锁
os_unfair_lock_trylock(&lock);
//加锁
os_unfair_lock_lock(&lock);
//解锁
os_unfair_lock_unlock(&lock);
7.pthread_mutex
mutex叫做“互斥锁”,等待锁的线程处于休眠状态
需要导入头文件#import <pthread.h>
7.1
//初始化锁的属性
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL); //初始化锁
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, &attr); //尝试加锁
pthread_mutex_trylock(&mutex); //加锁
pthread_mutex_lock(&mutex); //解锁
pthread_mutex_unlock(&mutex); //销毁相关资源 --pthread_mutex在对象类释放的时候要销毁,其他锁无此情况
pthread_mutexattr_destroy(&attr);
pthread_mutex_destroy(&mutex);
7.2 pthread_mutex-递归锁
//初始化锁的属性
pthread_mutexattr_t attr;
pthread_mutexattr_t_int(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);//递归锁 //初始化锁
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, &attr);
7.3 pthread_mutex-条件
#import "MutexDemo3.h" #import <pthread.h> @interface MutexDemo3()
@property (assign, nonatomic) pthread_mutex_t mutex;
@property (assign, nonatomic) pthread_cond_t cond;
@property (strong, nonatomic) NSMutableArray *data;
@end @implementation MutexDemo3 - (instancetype)init
{
if (self = [super init]) {
// 初始化属性
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
// 初始化锁
pthread_mutex_init(&_mutex, &attr);
// 销毁属性
pthread_mutexattr_destroy(&attr); // 初始化条件
pthread_cond_init(&_cond, NULL); self.data = [NSMutableArray array];
}
return self;
} - (void)otherTest
{
[[[NSThread alloc] initWithTarget:self selector:@selector(__remove) object:nil] start]; [[[NSThread alloc] initWithTarget:self selector:@selector(__add) object:nil] start];
} // 生产者-消费者模式 // 线程1
// 删除数组中的元素
- (void)__remove
{
pthread_mutex_lock(&_mutex);
NSLog(@"__remove - begin"); if (self.data.count == ) {
// 等待
pthread_cond_wait(&_cond, &_mutex);
} [self.data removeLastObject];
NSLog(@"删除了元素"); pthread_mutex_unlock(&_mutex);
} // 线程2
// 往数组中添加元素
- (void)__add
{
pthread_mutex_lock(&_mutex); sleep(); [self.data addObject:@"Test"];
NSLog(@"添加了元素"); // 信号
pthread_cond_signal(&_cond);
// 广播
// pthread_cond_broadcast(&_cond); pthread_mutex_unlock(&_mutex);
} - (void)dealloc
{
pthread_mutex_destroy(&_mutex);
pthread_cond_destroy(&_cond);
} @end
补充:自旋锁、互斥锁比较
1. 什么情况下使用自旋锁比较划算?(OSSpinLock,但被os_unfair_lock取代,但是os_unfair_lock不是自旋锁)
- 预计线程等待锁的时间很短
- 加锁的代码(临界区)经常被调用,但竞争情况很少发生
- CPU资源不紧张
- 多核处理器
2. 什么情况下使用互斥锁比较划算?(pthread_mutex, NSLock等)
- 预计线程等待锁的时间较长
- 单核处理器
- 临界区有IO操作
- 临界区代码复杂或者循环量大
- 临界区竞争非常激烈
以上就是自己在开发中所经常使用到的加锁方式,希望对大家有所帮助!!!
iOS 加锁的方式的更多相关文章
- iOS页面传值方式
普遍传值方式如下: 1.委托delegate方式: 2.通知notification方式: 3.block方式: 4.UserDefault或者文件方式: 5.单例模式方式: 6.通过设置属性,实现页 ...
- iOS数据持久化方式及class_copyIvarList与class_copyPropertyList的区别
iOS数据持久化方式:plist文件(属性列表)preference(偏好设置)NSKeyedArchiver(归档)SQLite3CoreData沙盒:iOS程序默认情况下只能访问自己的程序目录,这 ...
- IOS 网络请求方式
iOS开发中的网络请求 今天来说说关于iOS开发过程中的网络请求. 关于网络请求的重要性我想不用多说了吧.对于移动客户端来说,网络的重要性不言而喻.常见的网络请求有同步GET, 同步POST, 异 ...
- IOS以无线方式安装企业内部应用(开发者)
请先阅读:http://help.apple.com/deployment/ios/#/apda0e3426d7 操作系统:osx yosemite 10.10.5 (14F1509) xcode:V ...
- Java 多线程加锁的方式总结及对比(转载)
转自https://blog.csdn.net/u010842515/article/details/67634813 参考博文:http://www.cnblogs.com/handsomeye/p ...
- iOS -数据持久化方式-以真实项目讲解
前面已经讲解了SQLite,FMDB以及CoreData的基本操作和代码讲解(CoreData也在不断学习中,上篇博客也会不断更新中).本篇我们将讲述在实际开发中,所使用的iOS数据持久化的方式以及怎 ...
- IOS渠道追踪方式
本文来自网易云社区 作者:马军 IOS,安卓渠道追踪的差异 Google Play国内不可用,国内的安卓 App 分发,都是依托几十个不同的应用市场或发行渠道,如百度.360.腾讯等互联网企业以及小米 ...
- 最新iOS砸壳方式Frida (Mac OSX)
1. 安装Frida 首先需要安装Python3,我下载的是 macOS 64-bit installer 安装,因Macbook本机自带python为2.7.x,故需要配置~/.bash_profi ...
- IOS自动化定位方式
原文地址http://blog.csdn.net/wuyepiaoxue789/article/details/77885136 元素属性的介绍 type:元素类型,与className作用一致,如: ...
随机推荐
- 在Linux上搭建测试环境常用命令(转自-测试小柚子)
一.搭建测试环境: 二.查看应用日志: (1)vivi/vim 原本是指修改文件,同时可以使用vi 日志文件名,打开日志文件(2)lessless命令是查看日志最常用的命令.用法:less 日志文件名 ...
- EF CodeFirst类生成器
前段时间由于用到EF Code First. 上头让我添加一个功能,然后....要映射12张表到实体类中... 太无语了吧...一张表30多个字段啊老大!!!! "有没有工具可以快速弄啊,自 ...
- UEditor之实现配置简单的图片上传示例
UEditor之实现配置简单的图片上传示例 原创 2016年06月11日 18:27:31 开心一笑 下班后,阿华到楼下小超市买毛巾,刚买完出来,就遇到同一办公楼里另一家公司的阿菲,之前与她远远的有过 ...
- 东软实习<2>
学习过程及小节 Jdk在linux上的安装解压配置 Mysql的安装 配置 Tomcat的安装 配置 管理 SSH的安装 Notepad的连接与使用 对四大作用域及其范围进行了介绍 讲解了有关负载均衡 ...
- 【kafka学习之五】kafka运维:kafka操作日志设置和主题删除
一.操作日志 首先附上kafka 操作日志配置文件:log4j.properties 根据相应的需要设置日志. #日志级别覆盖规则 优先级:ALL < DEBUG < INFO <W ...
- 高性能网络服务器编程:为什么linux下epoll是最好,Netty要比NIO.2好?
基本的IO编程过程(包括网络IO和文件IO)是,打开文件描述符(windows是handler,java是stream或channel),多路捕获(Multiplexe,即select和poll和ep ...
- PHP算法之选择排序
//选择排序 $array = [10,203,30,2,4,43]; //第一次从下标为0的开始下标为0的这个数与后面的n-1个进行比较:找出最小或者最大的放在下标为0的这个位置; //第二次从下标 ...
- Unable to preventDefault inside passive event listener due to target being treated as passive
Unable to preventDefault inside passive event listener due to target being treated as passive 今天在做项目 ...
- linux-centerOs6.8安装nginx与配置
一:安装nginx 1.安装gcc(命令:yum install gcc)备注:可以输入gcc -v查询版本信息,查看是否自带安装 2.安装pcre(命令:yum install pcre-devel ...
- redis 系列19 客户端
一. 概述 Redis服务器是可以与多个客户端建立网络连接,每个客户端可以向服务器发送命令请求,而服务器则接收并处理客户端发送的命令请求,并向客户端返回命令回复.通过使用I/O多路复用技术实现的文件事 ...