ZOJ Problem Set - 3593 拓展欧几里得 数学
ZOJ Problem Set - 3593
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3593
One Person Game
Time Limit: 2 Seconds Memory Limit: 65536 KB
There is an interesting and simple one person game. Suppose there is a number axis under your feet. You are at point A at first and your aim is point B. There are 6 kinds of operations you can perform in one step. That is to go left or right by a,b and c, here c always equals to a+b.
You must arrive B as soon as possible. Please calculate the minimum number of steps.
Input
There are multiple test cases. The first line of input is an integer T(0 < T ≤ 1000) indicates the number of test cases. Then T test cases follow. Each test case is represented by a line containing four integers 4 integers A, B, a and b, separated by spaces. (-231 ≤ A, B < 231, 0 < a, b < 231)
Output
For each test case, output the minimum number of steps. If it's impossible to reach point B, output "-1" instead.
Sample Input
2
0 1 1 2
0 1 2 4
Sample Output
1
-1
题解:先求ax+by=A-B的解中|x|+|y|最小的一组x,y值,利用拓展欧几里得可求出ax'+by'=gcd(a,b)的x',y'值,仅在A-B是gcd(a,b)的整数倍时,方程有解,令k=(A-B)/gcd(a,b),则可以求出,当两条直线相交时|x|+|y|最小,求出交点对应的t,由于交点可能不是整数,所以将t-1,t,t+1各判断一次,若x,y同号,结果取绝对值大的(因为同向时x+y可以合并为1步),若x,y异号,结果取绝对值之和,通过ans记录所有结果中的最小值。
#include<iostream>
#include<cmath>
#include<cstdio>
#define ll long long
using namespace std;
void exgcd(ll a,ll b,ll &gcd,ll &x,ll &y){
if(!b){
gcd=a;x=1;y=0;
}else{
exgcd(b,a%b,gcd,x,y);
ll tmp=x;
x=y;
y=tmp-a/b*y;
}
}
int main(){
int T;
ll a,b,A,B,x,y,gcd,ans,t;
scanf("%d",&T);
while(T--){
scanf("%lld%lld%lld%lld",&A,&B,&a,&b);
exgcd(a,b,gcd,x,y);
//cout<<x<<" "<<y<<endl;
if((A-B)%gcd)
{printf("-1\n");continue;}
x=(A-B)/gcd*x;
y=(A-B)/gcd*y;
ans=9999999999;
a/=gcd,b/=gcd;
t=(y-x)/(a+b);
//直线x=x+bt与直线y=y-at的距离最近时对应的整数t
for(int i=t-1;i<=t+1;i++)//t不一定为整数,左右各取一次
if(abs(x+i*b)+abs(y-i*a)==abs(x+i*b+y-i*a))//同号
ans=min(ans,max(abs(x+i*b),abs(y-i*a)));
else//异号
ans=min(ans,abs(x+i*b)+abs(y-i*a));
printf("%lld\n",ans);
}
return 0;
}
ZOJ Problem Set - 3593 拓展欧几里得 数学的更多相关文章
- ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- [zoj 3774]Power of Fibonacci 数论(二次剩余 拓展欧几里得 等比数列求和)
Power of Fibonacci Time Limit: 5 Seconds Memory Limit: 65536 KB In mathematics, Fibonacci numbe ...
- POJ 2891 Strange Way to Express Integers(拓展欧几里得)
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...
- SGU 141.Jumping Joe 数论,拓展欧几里得,二元不等式 难度:3
141. Jumping Joe time limit per test: 0.25 sec. memory limit per test: 4096 KB Joe is a frog who lik ...
- 【lydsy1407】拓展欧几里得求解不定方程+同余方程
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1407 题意: 有n个野人,野人各自住在第c[i]个山洞中(山洞成环状),每年向前走p[i] ...
- NOIP2012拓展欧几里得
拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...
- POJ1061 青蛙的约会-拓展欧几里得
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...
随机推荐
- 【UOJ448】【集训队作业2018】人类的本质 min_25筛
题目大意 给你 \(n,m\),求 \[ \sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,x_1),\gcd(i, ...
- torch.view()详解及-1参数是什么意思
经常可以看到调用torch.view(-1,28*28)之类的调用,那么这里的-1是什么意思呢,经过查看文档view()得到了一下结果: view()返回的数据和传入的tensor一样,只是形状不同 ...
- laravel带参数分页
<!---分页--> <div id="pagination-box"> {{ $list->appends(['mobile'=>$mobil ...
- UVA11825 黑客的攻击 Hackers' Crackdown 状压DP,二进制,子集枚举
题目链接Click Here [题目描述] 假如你是一个黑客,侵入了一个有着\(n\)台计算机(编号为\(1.2.3....n\))的网络.一共有\(n\)种服务,每台计算机都运行着所有服务.对于每台 ...
- 神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...
- I/O模型系列之四:两种高性能IO设计模式 Reactor 和 Proactor
不同的操作系统实现的io策略可能不一样,即使是同一个操作系统也可能存在多重io策略,常见如linux上的select,poll,epoll,面对这么多不同类型的io接口,这里需要一层抽象api来完成, ...
- 责任链模式-Chain of Responsibility(Java实现), 例2
责任链模式-Chain of Responsibility 在这种模式中,通常每个接收者都包含对另一个接收者的引用.如果一个对象不能处理该请求,那么它会把相同的请求传给下一个接收者,依此类推. 咱们在 ...
- Angular记录(3)
文档资料 箭头函数--MDN:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Functions/Arrow_fun ...
- linux的sed命令(一)
转自:https://www.cnblogs.com/ginvip/p/6376049.html Sed 简介 sed 是一种新型的,非交互式的编辑器.它能执行与编辑器 vi 和 ex 相同的编辑任务 ...
- jdbcTemplate批量插入处理数据
最近有个需求,就是批量处理数据,但是并发量应该很大,当时第一时间想到得是mybatis的foreach去处理,但是后来通过查资料发现,相对有spring 的jdbcTemplate处理速度,mybat ...