什么是GraphQL

GraphQL 是一种面向 API 的查询语言。在互联网早期,需求都以 Web 为主,那时候数据和业务需求都不复杂,所以用 RestAPI 的方式完全可以满足需求。但是随着互联网的发展,数据量增大,业务需求多变。还有各种客户端需要接口适配,基于 RestAPI 的方式,显得越来呆板,因此 GraphQL 便应运而生。它至少可以提供以下三个方面的优势

  1. GraphQL 提供更方便的 API 查询

不同的客户端有时候需要返回的数据格式不同,之前使用 RestAPI 的方式,需要后端针对每一个客户端提供单独的接口。随着业务需求的增加,维护的成本随机呈指数级跃升。而使用 GraphQL 就比较开心了,只需要写一套接口即可

  1. 解决前后端过于依赖

在开发的过程中,前端需要和后端反反复复确认各个字段,防止到时候开发到一半,因为没有对好字段,要大块大块地改代码。现在有 GraphQL 就比较方便了,你需要什么类型的字段,就自己写对应的查询语法

  1. 节约网络和计算机内存资源

之前通过 RestAPI 的方式写接口,有一个很大的问题在于,对于接口的定义,需要前期做大量的工作,针对接口做各种力度的拆分,但即使这样,也没办法应对需求的风云突变。有时候需要返回的仅仅是某个用户的某一类型的数据,但不得不把该用户的其他信息也一并返回来,这既浪费了网络的资源,也消耗了计算机的性能。显然不够优雅,GraphQL 再一次证明了它的强大,它能够提供 DIY 获取所需要的数据,用多少,拿多少,可以说是相当环保了

PS : 更多 GraphQL 的介绍可以看文末的参考资料

介绍

这篇文章,我将用一个具体的 Todo List 实例,和大家一起,一步步手动搭建一个 GraphQL + MongoDB 的项目实例。我们将会在其中用到以下库,开始之前需要提前安装好:

  1. graphene_mongo
  2. graphene
  3. mongoengine
  4. flask_graphql
  5. Flask

在开始之前,我们来梳理一下我们的核心需求,我们要建立一个 Todo List 产品,我们核心的表只有两个,一个是用户表,存储所有的用户信息,另外一个是任务表,存储着所有用户的任务信息。任务表通过用户 id 与对应的用户关联。表结构对应的是一对多的关系,核心的数据字段如下:

task表

{
"_id" : ObjectId("5c353fd8771502a411872712"),
"_in_time" : "2019-01-09 08:26:53",
"_utime" : "2019-01-09 09:26:39",
"task" : "read",
"start_time" : "2019-01-09 08:26:53",
"end_time" : "2019-01-09 08:26:53",
"repeat" : [
"Wed"
],
"delete_flag" : NumberInt(0),
"user" : "1"
}

user表

{
"_id" : "1",
"_in_time" : "2019-01-09 08:39:16",
"_utime" : "2019-01-09 09:23:25",
"nickname" : "xiao hong",
"sex" : "female",
"photo": "http://xh.jpg",
"delete_flag" : NumberInt(0)
}

项目结构

一图胜千言,为更清晰的了解项目的整体结构,我将项目的整体目录结构打印下来,小伙伴们可以参照着目录结构,看接下来的搭建步骤

----task_graphql\
|----api.py
|----database\
| |----__init__.py
| |----base.py
| |----model_task.py
| |----model_user.py
|----requirements.txt
|----schema.py
|----schema_task.py
|----schema_user.py
 
pic_1.png
  • user_model 和 task_model 定义数据模块,直接数据库 mongo 对接
  • 上层定义的 schema 操作 shema_user 和 schema_task 对数据 model 进行增删改查操作
  • 最后 flask 搭建对外的 api 服务实现和外界的请求交互

创建数据模型

我们的数据模型结构非常简单

  • user_model 列出所有的用户信息
  • task_model 列出所有的任务信息,通过user字段与用户表关联,表示该任务归属于哪一个用户
 
pic_2.png
base.py
from mongoengine import connect

connect("todo_list", host="127.0.0.1:27017")

只需要通过调用 mongoengine 的 connect 指定对应的数据库链接信息和数据库即可,后面直接引入至Flask模块会自动识别连接

model_user.py
import sys
sys.path.append("..") from mongoengine import Document
from mongoengine import (StringField, IntField)
from datetime import datetime class ModelUser(Document): meta = {"collection": "user"} id = StringField(primary_key=True)
_in_time = StringField(required=True, default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
_utime = StringField(required=True, default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
nickname = StringField(required=True)
sex = StringField(default="unknown", required=True)
delete_flag = IntField(default=0, required=True)

所要定义的数据文档都通过 mongoengine 的 Document 继承,它可以将对应字段转换成类属性,方便后期对数据进行各种操作,meta 字段指定对应的你需要链接的是哪张 mongo 表

model_task.py
import sys
sys.path.append("..") from mongoengine import Document
from mongoengine import (StringField, ListField, IntField, ReferenceField) from .model_user import ModelUser
from datetime import datetime class ModelTask(Document): meta = {"collection": "task"} _in_time = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
_utime = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
task = StringField(default="", required=True)
start_time = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
end_time = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
repeat = ListField(StringField(required=True))
delete_flag = IntField(default=0, required=True)
user = ReferenceField(ModelUser, required=True)

其中 required 表示这个字段是必须字段,default 可以设置该字段的默认值。ReferenceField 可以指定和哪个模型相关联,这里指定的是 ModelUser 字段,关联默认为对应 mongo 表中的 _id 字段

创建GraphQL查询

现在我们已经将数据库和模型部分的连接功能完成了,接下来创建 API 部分,在我们的 task_graphql 目录下,有两个文件,schema_task.py 和 schema_user.py 分别将 model_task 和 model_user 类映射成 Graphene schema对象

schema_task.py
from database.model_task import ModelTask
from graphene_mongo import MongoengineObjectType import graphene
import schema_user from datetime import datetime class TaskAttribute:
id = graphene.ID()
_in_time = graphene.String()
_utime = graphene.String()
task = graphene.String()
start_time = graphene.String()
end_time = graphene.String()
repeat = graphene.List(graphene.String)
delete_flag = graphene.Int()
user = graphene.String() class Task(MongoengineObjectType): class Meta:
model = ModelTask class TaskNode(MongoengineObjectType):
class Meta:
model = ModelTask
interfaces = (graphene.relay.Node, )
schema_user.py
from database.model_task import ModelTask
from graphene_mongo import MongoengineObjectType import graphene from datetime import datetime class TaskAttribute:
id = graphene.ID()
_in_time = graphene.String()
_utime = graphene.String()
task = graphene.String()
start_time = graphene.String()
end_time = graphene.String()
repeat = graphene.List(graphene.String)
delete_flag = graphene.Int()
user = graphene.String() class Task(MongoengineObjectType): class Meta:
model = ModelTask class TaskNode(MongoengineObjectType):
class Meta:
model = ModelTask
interfaces = (graphene.relay.Node, )

现在我们创建一个 schema.py 的文件,把刚才定义好的 schema_task.py 和 schema_user.py 文件引入进来,定义两个对外访问的接口

  • tasks: 查询所有任务信息,返回一个list
  • users: 查询所有用户信息,返回一个list
import schema_user
import schema_task
import graphene
from graphene_mongo.fields import MongoengineConnectionField class Query(graphene.ObjectType): node = graphene.relay.Node.Field() tasks = MongoengineConnectionField(schema_task.TaskNode) users = MongoengineConnectionField(schema_user.UserNode) schema = graphene.Schema(query=Query)

创建 Flask 应用

在主目录下创建一个 api.py 文件,将我们之前定义好的数据库连接和 schema 引入进来,用 Flask 的 add_url_rule 方法将两者关联起来,为了方便访问,我们通过引入 flask_graphql 的 GraphQLView 方法,将接口可视化出来,方便调试

from flask import Flask
from schema import schema
from flask_graphql import GraphQLView
from database.base import connect
from logger import AppLogger log = AppLogger("task_graphql.log").get_logger() app = Flask(__name__)
app.debug = True app.add_url_rule("/graphql", view_func=GraphQLView.as_view("graphql", schema=schema, graphiql=True)) if __name__ == '__main__':
app.run()

到这里,我们就已经用 graphql 成功创建了一个可查询的 Todo List 接口,接下来。我们可以用它来测试一下查询接口吧。然后在开始查询之前大家需要自己 mock 点数据到 mongo 里面

 
pic_3.png

我们访问接口地址(http://127.0.0.1:5000/graphql),来查询一下看看效果

 
pic_4.png

添加 GraphQL 更新方法(mutation)

GraphQL 官方将更新创建操作,全部整合在 mutation 下,它包含了插入和更新数据功能,接下来我们就继续上面的操作,将这部分功能完善

schema_task.py
from database.model_task import ModelTask
from graphene_mongo import MongoengineObjectType import graphene from datetime import datetime class TaskAttribute:
id = graphene.ID()
_in_time = graphene.String()
_utime = graphene.String()
task = graphene.String()
start_time = graphene.String()
end_time = graphene.String()
repeat = graphene.List(graphene.String)
delete_flag = graphene.Int()
user = graphene.String() class Task(MongoengineObjectType): class Meta:
model = ModelTask class TaskNode(MongoengineObjectType):
class Meta:
model = ModelTask
interfaces = (graphene.relay.Node, ) class CreateTaskInput(graphene.InputObjectType, TaskAttribute):
pass class CreateTask(graphene.Mutation): task = graphene.Field(lambda: TaskNode) class Arguments:
input = CreateTaskInput(required=True) def mutate(self, info, input):
task = ModelTask(**input)
task.save()
return CreateTask(task=task) class UpdateTask(graphene.Mutation): task = graphene.Field(lambda: TaskNode) class Arguments:
input = CreateTaskInput(required=True) def mutate(self, info, input):
id = input.pop("id")
task = ModelTask.objects.get(id=id)
task._utime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
task.update(**input)
task.save()
return UpdateTask(task=task)
schema_user.py
from database.model_user import ModelUser
from graphene_mongo.types import MongoengineObjectType
import graphene
from datetime import datetime class UserAttribute:
id = graphene.String()
_in_time = graphene.String()
_utime = graphene.String()
nickname = graphene.String()
photo = graphene.String()
sex = graphene.String()
delete_flag = graphene.Int() class User(MongoengineObjectType): class Meta:
model = ModelUser class UserNode(MongoengineObjectType): class Meta:
model = ModelUser
interfaces = (graphene.relay.Node, ) class CreateUserInput(graphene.InputObjectType, UserAttribute):
pass class CreateUser(graphene.Mutation): user = graphene.Field(lambda: UserNode) class Arguments:
input = CreateUserInput(required=True) def mutate(self, info, input):
user = ModelUser(**input)
user.save()
return CreateUser(user=user) class UpdateUser(graphene.Mutation): user = graphene.Field(lambda: UserNode) class Arguments:
input = CreateUserInput(required=True) def mutate(self, info, input):
id = input.pop("id")
user = ModelUser.objects.get(id=id)
user._utime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
user.update(**input)
user.save()
return UpdateUser(user=user)

一看代码便知,我们将需要添加的信息,通过input传入进来,然后将对应的参数进行映射即可。我们再通过实例看下创建数据的效果

 
pic_5.png

我们再来试下修改数据的操作,like this

 
pic_6.png

bingo!!!

至此,我们通过 GraphQL 搭配 MongoDB 的操作就完美收关了。

完整项目请查看 github: https://github.com/hacksman/task_graphql_demo

以上都是自己一路踩过了很多坑之后总结出的方法,如有疏漏,还望指正

作者:鸡仔说
链接:https://www.jianshu.com/p/4481a9a791fe
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

GraphQL搭配MongoDB入门项目实战的更多相关文章

  1. python操作三大主流数据库(10)python操作mongodb数据库④mongodb新闻项目实战

    python操作mongodb数据库④mongodb新闻项目实战 参考文档:http://flask-mongoengine.readthedocs.io/en/latest/ 目录: [root@n ...

  2. 基于renren-fast的快速入门项目实战(实现报表增删改查)

    基于renren-fast的快速入门项目实战(实现报表增删改查) 说明:renren-fast是一个开源的基于springboot的前后端分离手脚架,当前版本是3.0 官方开发文档需付费,对于新手而言 ...

  3. 《Node+MongoDB+React 项目实战开发》已出版

    前言 从深圳回长沙已经快4个月了,除了把车开熟练了外,并没有什么值得一提的,长沙这边要么就是连续下一个月雨,要么就是连续一个月高温暴晒,上班更是没啥子意思,长沙这边的公司和深圳落差挺大的,薪资也是断崖 ...

  4. 史上最强NDK入门项目实战

    目标: 利用NDK生成SO库,使用SO库进行JNI调用,在Android sdcard创建文件并写入数据. 工具: NDK1.5 R1, android SDK1.5 R1, SDCARD, Ecli ...

  5. MyBatisPLus入门项目实战各教程目录汇总

    https://blog.csdn.net/BADAO_LIUMANG_QIZHI/column/info/37194 http://www.imooc.com/article/details/id/ ...

  6. Linux运维企业架构项目实战系列

    Linux运维企业架构项目实战系列 项目实战1—LNMP的搭建.nginx的ssl加密.权限控制的实现 项目实战2—LVS.nginx实现负载均衡系列2.1 项目实战2.1—实现基于LVS负载均衡集群 ...

  7. GraphQL + React Apollo + React Hook + Express + Mongodb 大型前后端分离项目实战之后端(19 个视频)

    GraphQL + React Apollo + React Hook + Express + Mongodb 大型前后端分离项目实战之后端(19 个视频) GraphQL + React Apoll ...

  8. MongoDB入门必读(概念与实战并重)

    MongoDB入门必读(概念与实战并重) 一.概述 MongoDB是一个基于分布式文件存储的数据库开源项目.由C++语言编写.旨在为WEB应用提供可护展的高性能数据存储解决方案. MongoDB是一个 ...

  9. 零基础入门Python实战:四周实现爬虫网站 Django项目视频教程

    点击了解更多Python课程>>> 零基础入门Python实战:四周实现爬虫网站 Django项目视频教程 适用人群: 即将毕业的大学生,工资低工作重的白领,渴望崭露头角的职场新人, ...

随机推荐

  1. C++中的字符串的输入输出函数、空字符与空格的区别、字符变量赋值和字符串初始化

      一.字符串输入输出函数 1.  cin.get()   逐个字符输入输出 2.  cin 可以将整个字符串一次性输入,但是,cin将空格.Tab和回车键,因此不能用于数组的一次性输入. 注意:ci ...

  2. X-template

    <body> <div id="app"> <hello-world></hello-world> </div> < ...

  3. Delphi 对ini文件的操作

    界面如图: 代码如下: unit Unit1; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Vari ...

  4. 第一章 Java入门

    一.JAVA的特点 简单.面向对象.平台无关.多线程.动态 (平台无关的原因:在操作系统上再提供JRE,只要提供JRE,JAVA编写的软件就能运行) 二.JAVA平台 JAVA SE(标准版).JAV ...

  5. 高精度加法——经典题 洛谷p1601

    题目背景 无 题目描述 高精度加法,x相当于a+b problem,[b][color=red]不用考虑负数[/color][/b] 输入输出格式 输入格式: 分两行输入a,b<=10^500 ...

  6. TCP学习总结(二)

    前面一节咱们介绍完了TCP协议,这部分,将要介绍,TCP是如何实现可靠传输的. TCP的可靠传输 1.滑动窗口 上一节我们介绍TCP报文段头部的时候说得到,"窗口"这个部分,&qu ...

  7. Windows 2008 asp.net 配置

    目录 1.     前言.. 32.     部署环境.. 32.1         服务器环境信息.. 33.     磁盘阵列配置.. 44.     安装操作系统.. 45.     安装软件. ...

  8. Python 多线程的程序不结束多进程的程序不结束的区别

    import time from threading import Thread from multiprocessing import Process #守护进程:主进程代码执行运行结束,守护进程随 ...

  9. amazeUI的confirm控件记录缓存问题的解决办法

    场景:列表行每行都有删除按钮,点击删除按钮将行记录的id传给js方法,js方法中调用amazeui的confirm控件,确认删除function通过ajax执行删除行为. 问题现象:每次删除列表第一行 ...

  10. JAVA对mysql的基本操作

    一.了解几个概念(了解) 1.DriverManager 1)必须知道它是管理数据库的所有驱动程序 2)它的所有方法都是静态的,其中最重要的是getConnection()方法,我们可以通过它获取一个 ...