P3629 [APIO2010] 巡逻 (树的直径)
(这道题考察了求直径的两种方法......)
在原图中,每条边要经过两次,增加1条后,形成了一个环,那么环上的边只需要经过一次了(大量画图分析得),再增加一条又会形成一个环,如果这两个环有重叠,重叠部分还是要经过两次,就浪费了,所以我们先找直径(两次dfs),在直径的两个端点连一条边,就可以得到k=1的答案了,如果k=2,将环上的边权都设为-1,再在新图上用DP求新的直径(因为边权有负,要用DP),最后也就得到k=2时的答案了。
1 #include<bits/stdc++.h>
2 using namespace std;
3 const int N=1e5+10;
4 int to[N<<1],nxt[N<<1],edge[N<<1],head[N],tot;
5 int n,k,p,q;
6 int d[N],pre[N],L2;
7
8 void add(int x,int y){
9 nxt[++tot]=head[x];
10 head[x]=tot;
11 to[tot]=y;
12 edge[tot]=1;
13 }
14
15 void dfs1(int u,int f){
16 if(d[u]>d[p]) p=u;
17 for(int i=head[u];i;i=nxt[i]){
18 int v=to[i];
19 if(v==f) continue;
20 d[v]=d[u]+edge[i];
22 dfs1(v,u);
23 }
24 }
25
26 void dfs2(int u,int f){
27 if(d[u]>d[q]) q=u;
28 for(int i=head[u];i;i=nxt[i]){
29 int v=to[i];
30 if(v==f) continue;
31 d[v]=d[u]+edge[i];
32 pre[v]=i;//记录路径
33 dfs2(v,u);
34 }
35 }
36
37 void update(int q,int p){
38 while(q!=p){
39 edge[pre[q]]=-1;
40 edge[pre[q]^1]=-1;//正反向边都变为-1
41 q=to[pre[q]^1];
42 }
43 }
44
45 void dp(int x,int f){//树形DP求直径
46 //d[]表示向下可以走的最远距离
47 for(int i=head[x];i;i=nxt[i]){
48 int y=to[i];
49 if(y==f) continue;
50 dp(y,x);
51 L2=max(L2,d[y]+d[x]+edge[i]);
52 d[x]=max(d[x],d[y]+edge[i]);
53 }
54 }
55
56 int main(){
57 cin>>n>>k;
58 tot=1;
59 for(int i=1;i<n;i++){
60 int x,y;
61 scanf("%d%d",&x,&y);
62 add(x,y);add(y,x);
63 }
64 dfs1(1,0);
65 memset(d,0,sizeof(d));
66 dfs2(p,0);
67 int ans=2*(n-1)-d[q]+1;
68 if(k==1){
69 cout<<ans<<endl;
70 return 0;
71 }
72 update(q,p);
73 memset(d,0,sizeof(d));
74 dp(1,0);
75 cout<<ans-L2+1<<endl;
76 }
P3629 [APIO2010] 巡逻 (树的直径)的更多相关文章
- 洛谷 P3629 [APIO2010]巡逻 解题报告
P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...
- 树的直径初探+Luogu P3629 [APIO2010]巡逻【树的直径】By cellur925
题目传送门 我们先来介绍一个概念:树的直径. 树的直径:树中最远的两个节点间的距离.(树的最长链)树的直径有两种方法,都是$O(N)$. 第一种:两遍bfs/dfs(这里写的是两遍bfs) 从任意一个 ...
- 洛谷P3629 [APIO2010]巡逻(树的直径)
如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就 ...
- 【BZOJ-1912】patrol巡逻 树的直径 + DFS(树形DP)
1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 1034 Solved: 562[Submit][St ...
- [洛谷P3629] [APIO2010]巡逻
洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...
- P3629 [APIO2010]巡逻
题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道 ...
- 洛谷 P3629 [APIO2010]巡逻
题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...
- 题解 BZOJ 1912 && luogu P3629 [APIO2010]巡逻 (树的直径)
本来抄了篇题解,后来觉得题解都太不友好(我太菜了),一气之下自己打...一打打到第二天QAQ 首先什么边也不加时,总路程就是2*(n-1) 考虑k=1的时候,答案显然是2*(n-1)-直径+1=2*n ...
- bzoj 1912 : [Apio2010]patrol 巡逻 树的直径
题目链接 如果k==1, 显然就是直径. k==2的时候, 把直径的边权变为-1, 然后在求一次直径. 变为-1是因为如果在走一次这条边, 答案会增加1. 学到了新的求直径的方法... #includ ...
随机推荐
- 基于ABP和Magicodes实现Excel导出操作
前端使用的vue-element-admin框架,后端使用ABP框架,Excel导出使用的Magicodes.IE.Excel.Abp库.Excel导入和导出操作几乎一样,不再介绍.文本主要介绍E ...
- CF1615G Maximum Adjacent Pairs
\(CF1615G\) Description 给定一个数列 \(a\),你需要将所有 \(a_i=0\) 的位置填上一个 \(1\sim n\) 的正整数,使得数列的「值」最大. 数列的值定义为满足 ...
- 什么是hive的静态分区和动态分区,它们又有什么区别呢?hive动态分区详解
面试官问我,什么是hive的静态分区和动态分区,这题我会呀. 简述 分区是hive存放数据的一种方式,将列值作为目录来存放数据,就是一个分区,可以有多列. 这样查询时使用分区列进行过滤,只需根据列值直 ...
- DolphinScheduler JSON拆解详解
本次活动邀请DolphinScheduler社区活跃贡献者,开源积极分子,现就职于政采云大数据部门,从事大数据平台架构工作的李进勇同学给大家分享相关内容. 同时也特别感谢示说网对本次直播活动的大力支持 ...
- 除了Synchronized关键字还有什么可以保证线程安全?
除了Synchronized关键字还有什么可以保证线程安全? 日常使用Java开发时,多线程开发,一般就用Synchronized保证线程安全,防止并发出现的错误和异常,那么 除了Synchr ...
- [CSharpTips]判断两条线段是否相交
判断两条线段是否相交 主要用到了通过向量积的正负判断两个向量位置关系 向量a×向量b(×为向量叉乘),若结果小于0,表示向量b在向量a的顺时针方向:若结果大于0,表示向量b在向量a的逆时针方向:若等于 ...
- MySQL入门笔记一
MySQL应用笔记 一MySQL关系型数据库.开源,中小型公司常用类型的数据库Oracle 大型公司常用数据库 MySQL基本的命令一. 创建.删除.查看数据库(database)创建库creat ...
- 服务器时间同步架构与实现chrony
实验背景 模拟企业局域服务器时间同步,保障各服务器系统准确性和时间一致性. 时间服务器系统搭建 实验架构图 环境设备 设备IP规划 国内互联网NTP服务器 ntp.aliyun.com #阿里云NTP ...
- HCNP Routing&Switching之MAC安全
前文我们了解了GRE over IPSec 相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/16601491.html:今天我们来聊一聊mac安全相关话 ...
- node前后端交互(Express)
1. Express框架是什么 1.1 Express是一个基于Node平台的web应用开发框架,它提供了一系列的强大特性,帮助你创建各种Web应用.我们可以使用 npm install expres ...