Morris 遍历实现二叉树的遍历

作者:Grey

原文地址:

博客园:Morris 遍历实现二叉树的遍历

CSDN:Morris 遍历实现二叉树的遍历

说明

Morris 遍历可以实现二叉树的先,中,后序遍历,且时间复杂度O(N), 空间复杂度可以做到O(1)

Morris 遍历流程

假设有一棵如下的二叉树

Morris遍历的流程主要分如下几个步骤:

第一步,从头节点开始遍历。

第二步,假设当前遍历的节点是cur

第三步,如果cur无左树, cur来到其右树上,即:cur = cur.right

第四步,如果cur有左树,找到cur左树最右节点,假设叫mostRight,则有如下两种小情况:

情况1,如果mostRight的右指针指向空, 则将mostRight的右指针指向cur,即:mostRight.right = cur, 然后将cur向左移动,即:cur = cur.left

情况2,如果mostRight的右指针指向当前节点cur,则将mostRight的右指针指向空,即:mostRight.right = null,然后将cur向右移动,即:cur = cur.right

第五步:当cur = null,遍历结束。

根据如上流程,示例二叉树的Morris遍历序列为:

1-->2-->4-->7-->11-->7-->4-->8-->12-->8-->1-->3-->5-->3-->6-->9-->13-->6-->10

Morris遍历可以实现在O(N)时间复杂度内,用O(1)的空间复杂度实现对树的遍历,而且,只要某个节点有右树,则这个节点一定会被遍历两次,我们可以通过Morris遍历来实现二叉树的先,中,后序遍历,做到时间复杂度O(N),空间复杂度O(1)

代码实现如下:

public class Code_Morris {

    //当前是cur
//1. cur无左树,cur = cur.right
//2. cur有左树,找到左树最右节点mostRight
// a. mostRight的右指针指向null, mostRight.right = cur, cur = cur.right
// b. mostRight的右指针指向当前节点cur,mostRight.right = null, cur = cur.right
//3. cur = null 停
public static void morrisPrint(TreeNode head) {
if (head == null) {
return;
}
System.out.println("....morris order....");
TreeNode cur = head;
System.out.print(cur.val + "-->");
TreeNode mostRight;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
System.out.print(cur.val + "-->");
continue;
} else {
mostRight.right = null;
}
}
cur = cur.right;
if (cur != null) {
System.out.print(cur.val + "-->");
}
}
}
}

Morris遍历实现先序遍历

根据Morris的遍历结果,没有右树的点只会遍历一次,有右树的点会遍历两次,针对遍历一次的点,遍历到就收集,针对遍历两次的点,第一次遍历到就收集,第二次遍历到不收集,整个流程跑完,则得到了先序遍历的结果。

代码如下:

    public static List<Integer> preorderTraversal(TreeNode root) {
if (null == root) {
return new ArrayList<>();
}
List<Integer> ans = new ArrayList<>();
TreeNode mostRight;
TreeNode cur = root;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
// 有右树,第一次来到自己就收集
ans.add(cur.val);
mostRight.right = cur;
cur = cur.left;
continue;
} else {
// mostRight.right = cur;
mostRight.right = null;
}
} else {
// 没有右树的,来到就收集
ans.add(cur.val);
}
cur = cur.right;
}
return ans;
}

测评链接:LeetCode 144. Binary Tree Preorder Traversal

Morris遍历实现中序遍历

针对遍历一次的点,遍历到就收集,针对遍历两次的点,第一次遍历到不收集,第二次遍历才收集,整个流程跑完,则得到了中序遍历的结果。

代码如下:

class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
if (root == null) {
return new ArrayList<>();
}
List<Integer> ans = new ArrayList<>();
TreeNode mostRight;
TreeNode cur = root;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
continue;
} else {
// 来到自己两次的点,第二次来到才收集
ans.add(cur.val);
mostRight.right = null;
}
} else {
// 只来到自己一次的点,来到就收集
ans.add(cur.val);
}
cur = cur.right;
}
return ans;
}
}

测评链接:LeetCode 94. Binary Tree Inorder Traversal

Morris遍历实现后序遍历

Morris遍历实现后序遍历相对比较麻烦,处理时机只放在能回到自己两次的点,能回到自己两次的点在第二次回到自己的时刻,不打印它自己,而是逆序打印他左树的右边界, 整个遍历结束后,单独逆序打印整棵树的右边界,即得到了后序遍历的结果。

代码如下:

    public List<Integer> postorderTraversal(TreeNode root) {
if (root == null) {
return new ArrayList<>();
}
List<Integer> ans = new ArrayList<>();
TreeNode cur = root;
TreeNode mostRight;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
continue;
} else {
mostRight.right = null;
// 第二次来到自己的时候,收集自己的左树的右边界
collect(cur.left, ans);
}
}
cur = cur.right;
}
collect(root, ans);
return ans;
} private void collect(TreeNode root, List<Integer> ans) {
TreeNode node = reverse(root);
TreeNode c = node;
while (c != null) {
ans.add(c.val);
c = c.right;
}
reverse(node);
} private TreeNode reverse(TreeNode node) {
TreeNode pre = null;
TreeNode cur = node;
while (cur != null) {
TreeNode t = cur.right;
cur.right = pre;
pre = cur;
cur = t;
}
return pre;
}

需要注意两点:

第一点,collect方法即逆序收集左树的有边界,由于每个节点没有指向父的指针,所以,要实现逆序,需要针对右边界采用反转链表的方式。即reverse函数的逻辑。

第二点,在collect方法调用完反转链表操作后,还要还原整个右边界。否则整棵树的指针就指乱了。

测评链接:LeetCode 145. Binary Tree Postorder Traversal

更多

算法和数据结构笔记

参考资料

算法和数据结构体系班-左程云

Morris 遍历实现二叉树的遍历的更多相关文章

  1. 二叉树的遍历--C#程序举例二叉树的遍历

    二叉树的遍历--C#程序举例二叉树的遍历 关于二叉树的介绍笨男孩前面写过一篇博客 二叉树的简单介绍以及二叉树的存储结构 遍历方案 二叉树的遍历分为以下三种: 先序遍历:遍历顺序规则为[根左右] 中序遍 ...

  2. 二叉树的遍历(递归,迭代,Morris遍历)

    二叉树的三种遍历方法: 先序,中序,后序,这三种遍历方式每一个都可以用递归,迭代,Morris三种形式实现,其中Morris效率最高,空间复杂度为O(1). 主要参考博客: 二叉树的遍历(递归,迭代, ...

  3. 二叉树的遍历(递归,迭代,Morris遍历)

    二叉树的遍历: 先序,中序,后序: 二叉树的遍历有三种常见的方法, 最简单的实现就是递归调用, 另外就是飞递归的迭代调用, 最后还有O(1)空间的morris遍历: 二叉树的结构定义: struct ...

  4. 二叉树的遍历——Morris

    在之前的博客中,博主讨论过二叉树的经典遍历算法,包括递归和常规非递归算法,其时间复杂度和空间复杂度均为O(n).Morris算法巧妙地利用了二叉树的线索化思路,将二叉树的遍历算法的空间复杂度降低为O( ...

  5. 二叉树中序遍历,先序遍历,后序遍历(递归栈,非递归栈,Morris Traversal)

    例题 中序遍历94. Binary Tree Inorder Traversal 先序遍历144. Binary Tree Preorder Traversal 后序遍历145. Binary Tre ...

  6. [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  7. 剑指Offer 通过中序和先序遍历重建二叉树

    题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7, ...

  8. C++ 二叉树深度优先遍历和广度优先遍历

    二叉树的创建代码==>C++ 创建和遍历二叉树 深度优先遍历:是沿着树的深度遍历树的节点,尽可能深的搜索树的分支. //深度优先遍历二叉树void depthFirstSearch(Tree r ...

  9. 【二叉树遍历模版】前序遍历&&中序遍历&&后序遍历&&层次遍历&&Root->Right->Left遍历

    [二叉树遍历模版]前序遍历     1.递归实现 test.cpp: 12345678910111213141516171819202122232425262728293031323334353637 ...

随机推荐

  1. 2511-Druid监控功能的深入使用与配置-如何记录监控数据(基于logback)

    Druid的监控很强大,但可惜的是监控数据是存在内存中的,需求就是定时把监控数据记录下来,以日志文件的形式或者数据库入库. 记录两种方式: 数据库入库 logback形式记录 原理(重点) 如果仅仅想 ...

  2. Python3.7+Django2.0.4配合Mongodb打造高性能高扩展标签云存储方案

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_141 书接上回,之前有一篇文章提到了标签云系统的构建:Python3.7+jieba(结巴分词)配合Wordcloud2.js来构 ...

  3. 使用flex弹性布局代替传统浮动布局来为微信小程序写自适应页面

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_109 我们知道,写习惯了前端的人,一般切图后布局页面的话,上手最习惯的是基于盒子模型的浮动布局,依赖 display 属性 + p ...

  4. Win10环境下使用Flask配合Celery异步推送实时/定时消息(Socket.io)/2020年最新攻略

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_163 首先得明确一点,和Django一样,在2020年Flask 1.1.1以后的版本都不需要所谓的三方库支持,即Flask-Ce ...

  5. Java8新特性: CompletableFuture详解

    CompletableFuture实现了CompletionStage接口和Future接口,前者是对后者的一个扩展,增加了异步回调.流式处理.多个Future组合处理的能力,使Java在处理多任务的 ...

  6. 高效能团队的Java研发规范(进阶版)

    目前大部分团队是使用的阿里巴巴Java开发规范,不过在日常开发中难免遇到覆盖不到的场景,本文在阿里巴巴Java开发规范基础上,补充一些常用的规范,用于提升代码质量及增强代码可读性. 编程规约 1.基础 ...

  7. Rust 从入门到精通05-数据类型

    Rust 是 静态类型(statically typed)语言,也就是说在编译时就必须知道所有变量的类型. 在 Rust 中,每一个值都属于某一个 数据类型(data type),分为两大类: ①.标 ...

  8. HCIA-Datacom 3.2 实验二:生成树基础实验

    实验介绍 以太网交换网络中为了进行链路备份,提高网络可靠性,通常会使用冗余链路.但是使用冗余链路会在交换网络上产生环路,引发广播风暴以及MAC地址表不稳定等故障现象,从而导致用户通信质量较差,甚至通信 ...

  9. day23--Java集合06

    Java集合06 13.Map接口02 13.2Map接口常用方法 put():添加 remove():根据键键删除映射关系 get():根据键获取值 size():获取元素个数 isEnpty(): ...

  10. 小A的树 - 树形DP

    题面 1 9 4 4 1 1 5 1 2 3 2 3 6 6 7 6 8 9 6 0 1 0 1 0 0 1 0 1 3 2 7 3 4 0 9 5 YES YES NO NO 题解 n <= ...