Morris 遍历实现二叉树的遍历

作者:Grey

原文地址:

博客园:Morris 遍历实现二叉树的遍历

CSDN:Morris 遍历实现二叉树的遍历

说明

Morris 遍历可以实现二叉树的先,中,后序遍历,且时间复杂度O(N), 空间复杂度可以做到O(1)

Morris 遍历流程

假设有一棵如下的二叉树

Morris遍历的流程主要分如下几个步骤:

第一步,从头节点开始遍历。

第二步,假设当前遍历的节点是cur

第三步,如果cur无左树, cur来到其右树上,即:cur = cur.right

第四步,如果cur有左树,找到cur左树最右节点,假设叫mostRight,则有如下两种小情况:

情况1,如果mostRight的右指针指向空, 则将mostRight的右指针指向cur,即:mostRight.right = cur, 然后将cur向左移动,即:cur = cur.left

情况2,如果mostRight的右指针指向当前节点cur,则将mostRight的右指针指向空,即:mostRight.right = null,然后将cur向右移动,即:cur = cur.right

第五步:当cur = null,遍历结束。

根据如上流程,示例二叉树的Morris遍历序列为:

1-->2-->4-->7-->11-->7-->4-->8-->12-->8-->1-->3-->5-->3-->6-->9-->13-->6-->10

Morris遍历可以实现在O(N)时间复杂度内,用O(1)的空间复杂度实现对树的遍历,而且,只要某个节点有右树,则这个节点一定会被遍历两次,我们可以通过Morris遍历来实现二叉树的先,中,后序遍历,做到时间复杂度O(N),空间复杂度O(1)

代码实现如下:

public class Code_Morris {

    //当前是cur
//1. cur无左树,cur = cur.right
//2. cur有左树,找到左树最右节点mostRight
// a. mostRight的右指针指向null, mostRight.right = cur, cur = cur.right
// b. mostRight的右指针指向当前节点cur,mostRight.right = null, cur = cur.right
//3. cur = null 停
public static void morrisPrint(TreeNode head) {
if (head == null) {
return;
}
System.out.println("....morris order....");
TreeNode cur = head;
System.out.print(cur.val + "-->");
TreeNode mostRight;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
System.out.print(cur.val + "-->");
continue;
} else {
mostRight.right = null;
}
}
cur = cur.right;
if (cur != null) {
System.out.print(cur.val + "-->");
}
}
}
}

Morris遍历实现先序遍历

根据Morris的遍历结果,没有右树的点只会遍历一次,有右树的点会遍历两次,针对遍历一次的点,遍历到就收集,针对遍历两次的点,第一次遍历到就收集,第二次遍历到不收集,整个流程跑完,则得到了先序遍历的结果。

代码如下:

    public static List<Integer> preorderTraversal(TreeNode root) {
if (null == root) {
return new ArrayList<>();
}
List<Integer> ans = new ArrayList<>();
TreeNode mostRight;
TreeNode cur = root;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
// 有右树,第一次来到自己就收集
ans.add(cur.val);
mostRight.right = cur;
cur = cur.left;
continue;
} else {
// mostRight.right = cur;
mostRight.right = null;
}
} else {
// 没有右树的,来到就收集
ans.add(cur.val);
}
cur = cur.right;
}
return ans;
}

测评链接:LeetCode 144. Binary Tree Preorder Traversal

Morris遍历实现中序遍历

针对遍历一次的点,遍历到就收集,针对遍历两次的点,第一次遍历到不收集,第二次遍历才收集,整个流程跑完,则得到了中序遍历的结果。

代码如下:

class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
if (root == null) {
return new ArrayList<>();
}
List<Integer> ans = new ArrayList<>();
TreeNode mostRight;
TreeNode cur = root;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
continue;
} else {
// 来到自己两次的点,第二次来到才收集
ans.add(cur.val);
mostRight.right = null;
}
} else {
// 只来到自己一次的点,来到就收集
ans.add(cur.val);
}
cur = cur.right;
}
return ans;
}
}

测评链接:LeetCode 94. Binary Tree Inorder Traversal

Morris遍历实现后序遍历

Morris遍历实现后序遍历相对比较麻烦,处理时机只放在能回到自己两次的点,能回到自己两次的点在第二次回到自己的时刻,不打印它自己,而是逆序打印他左树的右边界, 整个遍历结束后,单独逆序打印整棵树的右边界,即得到了后序遍历的结果。

代码如下:

    public List<Integer> postorderTraversal(TreeNode root) {
if (root == null) {
return new ArrayList<>();
}
List<Integer> ans = new ArrayList<>();
TreeNode cur = root;
TreeNode mostRight;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
continue;
} else {
mostRight.right = null;
// 第二次来到自己的时候,收集自己的左树的右边界
collect(cur.left, ans);
}
}
cur = cur.right;
}
collect(root, ans);
return ans;
} private void collect(TreeNode root, List<Integer> ans) {
TreeNode node = reverse(root);
TreeNode c = node;
while (c != null) {
ans.add(c.val);
c = c.right;
}
reverse(node);
} private TreeNode reverse(TreeNode node) {
TreeNode pre = null;
TreeNode cur = node;
while (cur != null) {
TreeNode t = cur.right;
cur.right = pre;
pre = cur;
cur = t;
}
return pre;
}

需要注意两点:

第一点,collect方法即逆序收集左树的有边界,由于每个节点没有指向父的指针,所以,要实现逆序,需要针对右边界采用反转链表的方式。即reverse函数的逻辑。

第二点,在collect方法调用完反转链表操作后,还要还原整个右边界。否则整棵树的指针就指乱了。

测评链接:LeetCode 145. Binary Tree Postorder Traversal

更多

算法和数据结构笔记

参考资料

算法和数据结构体系班-左程云

Morris 遍历实现二叉树的遍历的更多相关文章

  1. 二叉树的遍历--C#程序举例二叉树的遍历

    二叉树的遍历--C#程序举例二叉树的遍历 关于二叉树的介绍笨男孩前面写过一篇博客 二叉树的简单介绍以及二叉树的存储结构 遍历方案 二叉树的遍历分为以下三种: 先序遍历:遍历顺序规则为[根左右] 中序遍 ...

  2. 二叉树的遍历(递归,迭代,Morris遍历)

    二叉树的三种遍历方法: 先序,中序,后序,这三种遍历方式每一个都可以用递归,迭代,Morris三种形式实现,其中Morris效率最高,空间复杂度为O(1). 主要参考博客: 二叉树的遍历(递归,迭代, ...

  3. 二叉树的遍历(递归,迭代,Morris遍历)

    二叉树的遍历: 先序,中序,后序: 二叉树的遍历有三种常见的方法, 最简单的实现就是递归调用, 另外就是飞递归的迭代调用, 最后还有O(1)空间的morris遍历: 二叉树的结构定义: struct ...

  4. 二叉树的遍历——Morris

    在之前的博客中,博主讨论过二叉树的经典遍历算法,包括递归和常规非递归算法,其时间复杂度和空间复杂度均为O(n).Morris算法巧妙地利用了二叉树的线索化思路,将二叉树的遍历算法的空间复杂度降低为O( ...

  5. 二叉树中序遍历,先序遍历,后序遍历(递归栈,非递归栈,Morris Traversal)

    例题 中序遍历94. Binary Tree Inorder Traversal 先序遍历144. Binary Tree Preorder Traversal 后序遍历145. Binary Tre ...

  6. [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  7. 剑指Offer 通过中序和先序遍历重建二叉树

    题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7, ...

  8. C++ 二叉树深度优先遍历和广度优先遍历

    二叉树的创建代码==>C++ 创建和遍历二叉树 深度优先遍历:是沿着树的深度遍历树的节点,尽可能深的搜索树的分支. //深度优先遍历二叉树void depthFirstSearch(Tree r ...

  9. 【二叉树遍历模版】前序遍历&&中序遍历&&后序遍历&&层次遍历&&Root->Right->Left遍历

    [二叉树遍历模版]前序遍历     1.递归实现 test.cpp: 12345678910111213141516171819202122232425262728293031323334353637 ...

随机推荐

  1. 5.1SpringBoot整合Kafka(工具安装Kafka+Tools)

    1.工具安装Kafka 上一期我分享了安装zk,下一次我们把Kafka和可视化工具一起搞起来. 注意:这个时候ZK一定要启动成功. zk安装地址:https://www.cnblogs.com/dao ...

  2. 小白之Python基础(三)

    列表和元组 1.列表:最常用的 Python 数据类型(可变的数据类型) 1)列表是一个值,它包含多个值构成的序列: 2)通过[ ]或list()创建的有序元素的集合: 3)表项(列表中的值,也可以叫 ...

  3. 大数据管理系统架构Hadoop

    Hadoop 起源于Google Lab开发的Google File System (GFS)存储系统和MapReduce数据处理框架.2008年,Hadoop成了Apache上的顶级项目,发展到今天 ...

  4. B端产品需求分析与优先级判断

    需求分析是产品经理工作中的重要一部分,而对B端产品经理来说,因为业务的特殊性,所以需求分析更考验产品经理的基础能力比如还原场景中业务调研的能力.需求价值分析中对价值的界定等. B端厂商的产品需求多数来 ...

  5. 对于Java中的Loop或For-each,哪个更快

    Which is Faster For Loop or For-each in Java 对于Java中的Loop或Foreach,哪个更快 通过本文,您可以了解一些集合遍历技巧. Java遍历集合有 ...

  6. Spring Bean 详解

    Spring Bean 详解 Ioc实例化Bean的三种方式 1 创建Bean 1 使用无参构造函数 这也是我们常用的一种.在默认情况下,它会通过反射调⽤⽆参构造函数来创建对象.如果类中没有⽆参构造函 ...

  7. 基于ASP.NET Core 6.0的整洁架构

    大家好,我是张飞洪,感谢您的阅读,我会不定期和你分享学习心得,希望我的文章能成为你成长路上的垫脚石,让我们一起精进. 本节将介绍基于ASP.NET Core的整洁架构的设计理念,同时基于理论落地的代码 ...

  8. 因势而变,因时而动,Go lang1.18入门精炼教程,由白丁入鸿儒,Go lang泛型(generic)的使用EP15

    事实上,泛型才是Go lang1.18最具特色的所在,但为什么我们一定要拖到后面才去探讨泛型?类比的话,我们可以想象一下给小学一年级的学生讲王勃的千古名篇<滕王阁序>,小学生有多大的概率可 ...

  9. 输入a、b、c三个整数,按先大后小的顺序输出a、b和c。注意请使用指针变量的方式进行比较和输出。

    `void swap(int *a,int *b,int c){ if(a < *b){ int temp = *a; //防止temp没有初始化 随机存放地址指向系统工作区间 可以对temp初 ...

  10. KingbaseES 参数 - ignore_char_null_check

    KingbaseES 基于PostgreSQL进行了大量的Oracle兼容性开发,为了能同时兼容Oracle 和 PG 的特性,增加参数进行控制.以下介绍 KingbaseES 下特有的参数 igno ...