选用CUDA10.0镜像

添加nvidia-cuda和修改apt源

curl -fsSL https://mirrors.aliyun.com/nvidia-cuda/ubuntu1804/x86_64/7fa2af80.pub | apt-key add - && \
echo "deb https://mirrors.aliyun.com/nvidia-cuda/ubuntu1804/x86_64/ /" > /etc/apt/sources.list.d/cuda.list && \
bash /public/script/switch_apt_source.sh

安装curand

apt install cuda-curand-dev-10-0

修改conda源

bash /public/script/switch_conda_source.sh

创建python3.7虚拟环境

conda create -n py37 python=3.7
conda deactivate
conda activate py37



安装依赖包

apt-get -y install libboost-dev libprotobuf-dev libgflags-dev libgoogle-glog-dev libhdf5-dev libopencv-dev protobuf-c-compiler protobuf-compiler libopenblas-dev libhdf5-dev libleveldb-dev liblmdb-dev libboost-system-dev libboost-filesystem-dev libsnappy-dev libboost-thread-dev libatlas-base-dev libboost-python-dev

添加nvidia-machine-learning软件源

curl -fsSL https://mirrors.cloud.tencent.com/nvidia-machine-learning/ubuntu1804/x86_64/7fa2af80.pub | apt-key add - && \
echo "deb https://mirrors.cloud.tencent.com/nvidia-machine-learning/ubuntu1804/x86_64/ /" > /etc/apt/sources.list.d/cuda.list

安装剩余依赖包

apt update
apt install libnccl2=2.6.4-1+cuda10.0 libnccl-dev=2.6.4-1+cuda10.0
apt-get install -y --no-install-recommends libboost-all-dev
pip install boost
conda install opencv

git clone caffe仓库

git clone -b 1.0 --depth 1 https://github.com/BVLC/caffe.git
cd caffe
for req in $(cat python/requirements.txt); do pip install $req; done
cp Makefile.config.example Makefile.config
git clone -b 1.0 --depth 1 https://gitee.com/matpools/caffe.git

查找对应路径

python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())"
python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))"

(py37) root@a688d840812b:/caffe# python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())"
/root/miniconda3/envs/py37/include/python3.7m
(py37) root@a688d840812b:/caffe# python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))"
/root/miniconda3/envs/py37/lib

查找numpy路径

find /root/miniconda3/envs/py37/lib/ -name numpy

(py37) root@a688d840812b:/caffe# find /root/miniconda3/envs/py37/lib/ -name numpy
/root/miniconda3/envs/py37/lib/python3.7/site-packages/numpy/core/include/numpy

如果也是cuda10纯镜像可以直接复制下面的文件,然后保存。

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h. 如果是自己弄需要改PYTHON_INCLUDE
PYTHON_INCLUDE := /root/miniconda3/envs/py37/include/python3.7m \
/root/miniconda3/envs/py37/lib/python3.7/site-packages/numpy/core/include
# /usr/include/python2.7 \
# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) 如果是自己弄需要改PYTHON_LIBRARIES
PYTHON_LIBRARIES := boost_python3 python3.7m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. 如果是自己弄需要改PYTHON_LIB
PYTHON_LIB := /root/miniconda3/envs/py37/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial /usr/lib/x86_64-linux-gnu # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0 # enable pretty build (comment to see full commands)
Q ?= @

开始编译

make clean
make all -j6
make clean
make pycaffe -j6

设置环境变量

export PYTHONPATH=/caffe/python/:$PYTHONPATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/root/miniconda3/envs/py37/lib

使用ipython环境测试

ipython
import caffe
caffe.set_mode_gpu()
caffe.__version__

使用官方examples测试

#!/usr/bin/env sh
# This scripts downloads the mnist data and unzips it. DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd "$DIR" echo "Downloading..." for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
do
if [ ! -e $fname ]; then
wget --no-check-certificate https://storage.googleapis.com/cvdf-datasets/mnist/${fname}.gz
gunzip ${fname}.gz
fi
done
./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh
nvidia-smi -l 5

参考文章

https://hub.docker.com/r/floydhub/caffe/tags?page=1&ordering=last_updated

https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/url_checksums/mnist.txt

https://www.cnblogs.com/laosan007/p/11737704.html

https://blog.csdn.net/u010417185/article/details/53559107

https://github.com/BVLC/caffe/issues/720

https://github.com/BVLC/caffe/issues/263

https://github.com/BVLC/caffe/issues/6063

https://github.com/BVLC/caffe/issues/4843#issue-182962618

https://blog.csdn.net/xuezhisdc/article/details/48707101

矩池云上安装caffe gpu教程的更多相关文章

  1. 矩池云上安装yolov4 darknet教程

    这里我是用PyTorch 1.8.1来安装的 拉取仓库 官方仓库 git clone https://github.com/AlexeyAB/darknet 镜像仓库 git clone https: ...

  2. 矩池云上安装ikatago及远程链接教程

    https://github.com/kinfkong/ikatago-resources/tree/master/dockerfiles 从作者的库中可以看到,该程序支持cuda9.2.cuda10 ...

  3. 矩池云上使用nvidia-smi命令教程

    简介 nvidia-smi全称是NVIDIA System Management Interface ,它是一个基于NVIDIA Management Library(NVML)构建的命令行实用工具, ...

  4. 矩池云上安装 NVCaffe教程

    使用的是P100,cuda11.1base镜像 创建虚拟环境 conda create -n py36 python=3.6 conda deactivate conda activate py36 ...

  5. 矩池云上安装yolov5并测试教程

    官方仓库:https://github.com/ultralytics/yolov5 官方文档:https://docs.ultralytics.com/quick-start/ 此案例我是租用了k8 ...

  6. 矩池云上安装及使用Milvus教程

    选择cuda10.1的镜像 更新源及拷贝文件到本地 apt-get update cp -r /public/database/milvus/ / cd /milvus/ cp ./lib/* /us ...

  7. 矩池云上编译安装dlib库

    方法一(简单) 矩池云上的k80因为内存问题,请用其他版本的GPU去进行编译,保存环境后再在k80上用. 准备工作 下载dlib的源文件 进入python的官网,点击PyPi选项,搜索dilb,再点击 ...

  8. 在矩池云上复现 CVPR 2018 LearningToCompare_FSL 环境

    这是 CVPR 2018 的一篇少样本学习论文:Learning to Compare: Relation Network for Few-Shot Learning 源码地址:https://git ...

  9. 矩池云 | 高性价比的GPU租用深度学习平台

    矩池云是一个专业的国内深度学习云平台,拥有着良好的深度学习云端训练体验.在性价比上,我们以 2080Ti 单卡为例,36 小时折扣后的价格才 55 元,每小时单价仅 1.52 元,属于全网最低价.用户 ...

随机推荐

  1. mycat 简单介绍

    一.mycat? 1.为什么叫mycat 其实mycat在最早的初期版本只支持mysql一种数据库,换句话说mycat其实就是mysql的增强版 在mysql中只是数据库,并没有读写分离和分库分表,这 ...

  2. 使用 TensorFlow 构建机器学习项目中文版&#183;翻译完成

    原文:Building Machine Learning Projects with TensorFlow 协议:CC BY-NC-SA 4.0 不要担心自己的形象,只关心如何实现目标.--<原 ...

  3. JS 基本类型的包装对象

    笔记整理自:廖雪峰老师的JS教程 目录 包装对象 不写new的作用 总结 注意 包装对象 JavaScript还提供了包装对象,熟悉Java的小伙伴肯定很清楚int和Integer这种暧昧关系. nu ...

  4. java命令-(学习)jstack 工具

    一.介绍 jstack是java虚拟机自带的一种堆栈跟踪工具.jstack用于打印出给定的java进程ID或core file或远程调试服务的Java堆栈信息,如果是在64位机器上,需要指定选项&qu ...

  5. webpack打包如何统一js和css中图片资源路径

    目前项目应用的是vue-cli,自行修改了部分配置.三个环境的情况跟你差不多,测试/生产环境的层级比你还深. 先说下修改了哪些配置 1-build/utils.js下的cssLoaders内的gene ...

  6. 从StoryBoard加载控制器

    1.创建窗口self.window = [[UIWindow alloc] initWithFrame:[UIScreen mainScreen].bounds];2.加载控制器从StoryBoard ...

  7. 有了Autolayout的UILabel

    在没有Autolayout之前,UILabel的文字内容总是居中显示,导致顶部和底部会有一大片空缺区域 有Autolayout之后,UILabel的bounds默认会自动包住所有的文字内容,顶部和底部 ...

  8. Java基础复习(五)

    1. 接口是否可继承接口? 抽象类是否可实现(implements)接口? 抽象类是否可继承具体类(concrete class)? 抽象类中是否可以有静态的main方法? 接口可以继承接口.抽象类可 ...

  9. 基于人工智能标记语言 (AIML)和任务型对话系统(Task)的深度智能对话机器人demo

    起因 本demo基于基于人工智能标记语言 (AIML)和开放域问答(WebQA)的深度智能对话模型而来 无意间发现一个基于人工智能标记语言 (AIML)和开放域问答(WebQA)的深度智能对话模型,但 ...

  10. java中将SimpleDateFormat类型转换成Date类型

    try {String dateString = "2009-08-02 13:43:00";DateFormat df = SimpleDateFormat("yyyy ...