Crash的数字表格 (莫比乌斯反演)
Crash的数字表格
Description
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
Input
输入的第一行包含两个正整数,分别表示N和M。
Output
输出一个正整数,表示表格中所有数的和mod 20101009的值。
Sample Input
4 5
Sample Output
122
数据规模和约定
100%的数据满足N, M ≤ 10^7。
题解
我们不妨设 N < M ,这样好做些
很容易就可以得出,我们想要的答案是
枚举lcm不方便,我们用gcd
我们枚举gcd,上式就等于
我们把d分之一右边的式子拿出来处理,设
我们发现这个不好求,我们先求一个比较容易的,设
我们发现右边括号里的就是 ,可以用等差数列求和公式直接套,那么
由于我们发现F(n)和f(n)有这样的关系:
那么用一下莫比乌斯反演:
我们把它代入前面的ans:
然后我们求d和的前缀和,再分块就行。
这里可能很多人不理解这个分块是什么(我刚看题解的时候也不知道),我就解释一下
由于xd在一定的区间 [l , r] 中波动时, 的值是不变的,所以我们每次就直接算这个区间,中间不变,旁边的求d和的前缀和就可以解决,这样可以大大减少时间复杂度,两重循环下来就是O(n)了。
CODE
zxy AK了,%%%%%%%%
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<iostream>
#define MAXN 10000005
#define LL long long
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
//#pragma GCC optimize(2)
//#pragma G++ optimize(3)
//#define int LL
using namespace std;
inline int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
return x * f;
}
int zxy = 20101009;
int n,m,i,j,k,s,o;
int p[MAXN],cnt,mu[MAXN];
bool f[MAXN];
void sieve(int n) {
mu[1] = 1;
for(int i = 2;i <= n;i ++) {
if(!f[i]) {
p[++ cnt] = i;
mu[i] = -1;
}
for(int j = 1;j <= cnt && i * p[j] <= n;j ++) {
f[i * p[j]] = 1;
if(i % p[j] == 0) {
mu[i * p[j]] = 0;
break;
}
else mu[i * p[j]] = -mu[i];
}
}
for(int i = 1;i <= n;i ++) mu[i] = ((LL)mu[i] * i % zxy * i + mu[i-1]) % zxy;
return ;
}
inline int dx(int a,int b) {
return 1ll*(a + b) * (b - a + 1) / 2ll % zxy;
}
int solve(int n,int m) {
LL ans = 0,ans2 = 0;int ii,jj;
for(int i = 1;i <= n;i = ii + 1) {
ii = min(n / (n / i),m / (m / i));
int nd = n / i,md = m / i; ans2 = 0;
for(int j = 1;j <= nd;j = jj + 1) {
jj = min(nd / (nd / j),md / (md / j));
ans2 = (ans2 + (0ll+mu[jj] - mu[j-1]) * dx(1,nd/j) % zxy * dx(1,md/j) % zxy) % zxy;
}
ans = (ans + 1ll * ans2 * dx(i,ii) % zxy) % zxy;
}
return (ans + zxy) % zxy;
}
signed main() {
n = read();m = read();
if(n > m) swap(n,m);
sieve(m);
printf("%d",solve(n,m));
return 0;
}
Crash的数字表格 (莫比乌斯反演)的更多相关文章
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演
求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...
- 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]
数字表格 Time Limit: 50 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...
随机推荐
- Wget命令解释
Wget主要用于下载文件,在安装软件时会经常用到,以下对wget做简单说明. 1.下载单个文件:wget http://www.baidu.com.命令会直接在当前目录下载一个index.html的文 ...
- 从零开始实现lmax-Disruptor队列(二)多消费者、消费者组间消费依赖原理解析
MyDisruptor V2版本介绍 在v1版本的MyDisruptor实现单生产者.单消费者功能后.按照计划,v2版本的MyDisruptor需要支持多消费者和允许设置消费者组间的依赖关系. 由于该 ...
- 23.Nginx+keepalived负载均衡高可用
Nginx+keepalived负载均衡高可用 结构图 环境: 主 服务器:192.168.239.10 备 服务器:192.168.239.20 Web 服务器1:192.168.239.40 We ...
- Skywalking光会用可不行,必须的源码分析分析 - Skywalking Agent &插件解析
3 Skywalking源码导入 接上文,已经学习了Skywalking的应用,接下来我们将剖析Skywalking源码,深度学习Skywalking Agent. 3.1 源码环境搭建 当前最新版本 ...
- 无法打开虚拟机“master”(D:\文档\Virtual Machines\master\master.vmx):未找到文件。是否从库中移除“master”?
今天打开虚拟机的时候,出现了这样的弹窗提示: 无法打开虚拟机"master"(D:\文档\Virtual Machines\master\master.vmx):未找到文件.是否从 ...
- bat-设置oracle服务
1.停止oracle所有服务 并将服务设置为手动启动 @echo off echo oracle服务--------停止 net stop OracleVssWriterORCL net stop O ...
- 模拟HashMap冲突
最近看HashMap的源码,其中相同下标容易产生hash冲突,但是调试需要发生hash冲突,本文模拟hash冲突. hash冲突原理 HashMap冲突是key首先调用hash()方法: static ...
- JDBC: ThreadLocal 类
1.ThreadLocal ThreadLocal用于保存某个线程共享变量.在Java中,每个线程对象都有一个ThreadLocal<ThreadLocal,Object>,其中key就是 ...
- 编程思想转换&体验Lambda的更优写法和Lambda标准格式
编程思想转换做什么,而不是怎么做 我们真的希望创建一个匿名内部类对象吗?不,我们只是为了做这件事情而不得不创建一个对象. 我们真正希望做的事情是:将run方法体内的代码传递给Thread类知晓. 传递 ...
- spring boot 打包为war包方法
刚刚接触spring boot,其快速开发的特性吸引我去研究一下.于是我写了个demo,用spring boot内置的tomcat运行的很好,但是我需要把它部署到外部的tomcat中,于是从网上查找资 ...