Crash的数字表格

Description

今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。

Input

输入的第一行包含两个正整数,分别表示N和M。

Output

输出一个正整数,表示表格中所有数的和mod 20101009的值。

Sample Input

4 5

Sample Output

122

数据规模和约定

100%的数据满足N, M ≤ 10^7。

题解

我们不妨设 N < M ,这样好做些

很容易就可以得出,我们想要的答案是

枚举lcm不方便,我们用gcd

我们枚举gcd,上式就等于

我们把d分之一右边的式子拿出来处理,设

我们发现这个不好求,我们先求一个比较容易的,设

我们发现右边括号里的就是 ,可以用等差数列求和公式直接套,那么

由于我们发现F(n)和f(n)有这样的关系:

那么用一下莫比乌斯反演:

我们把它代入前面的ans:

然后我们求d和的前缀和,再分块就行。

这里可能很多人不理解这个分块是什么(我刚看题解的时候也不知道),我就解释一下

由于xd在一定的区间 [l , r] 中波动时, 的值是不变的,所以我们每次就直接算这个区间,中间不变,旁边的求d和的前缀和就可以解决,这样可以大大减少时间复杂度,两重循环下来就是O(n)了。

CODE

zxy AK了,%%%%%%%%

#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<iostream>
#define MAXN 10000005
#define LL long long
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
//#pragma GCC optimize(2)
//#pragma G++ optimize(3)
//#define int LL
using namespace std;
inline int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
return x * f;
}
int zxy = 20101009;
int n,m,i,j,k,s,o;
int p[MAXN],cnt,mu[MAXN];
bool f[MAXN];
void sieve(int n) {
mu[1] = 1;
for(int i = 2;i <= n;i ++) {
if(!f[i]) {
p[++ cnt] = i;
mu[i] = -1;
}
for(int j = 1;j <= cnt && i * p[j] <= n;j ++) {
f[i * p[j]] = 1;
if(i % p[j] == 0) {
mu[i * p[j]] = 0;
break;
}
else mu[i * p[j]] = -mu[i];
}
}
for(int i = 1;i <= n;i ++) mu[i] = ((LL)mu[i] * i % zxy * i + mu[i-1]) % zxy;
return ;
}
inline int dx(int a,int b) {
return 1ll*(a + b) * (b - a + 1) / 2ll % zxy;
}
int solve(int n,int m) {
LL ans = 0,ans2 = 0;int ii,jj;
for(int i = 1;i <= n;i = ii + 1) {
ii = min(n / (n / i),m / (m / i));
int nd = n / i,md = m / i; ans2 = 0;
for(int j = 1;j <= nd;j = jj + 1) {
jj = min(nd / (nd / j),md / (md / j));
ans2 = (ans2 + (0ll+mu[jj] - mu[j-1]) * dx(1,nd/j) % zxy * dx(1,md/j) % zxy) % zxy;
}
ans = (ans + 1ll * ans2 * dx(i,ii) % zxy) % zxy;
}
return (ans + zxy) % zxy;
}
signed main() {
n = read();m = read();
if(n > m) swap(n,m);
sieve(m);
printf("%d",solve(n,m));
return 0;
}

Crash的数字表格 (莫比乌斯反演)的更多相关文章

  1. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  2. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  3. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  4. 【bzoj2154】Crash的数字表格 莫比乌斯反演

    题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...

  5. 【BZOJ】2154: Crash的数字表格 莫比乌斯反演

    [题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...

  6. BZOJ 2154 Crash的数字表格 ——莫比乌斯反演

    求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...

  7. [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块

    考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...

  8. bzoj2154: Crash的数字表格 莫比乌斯反演

    题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...

  9. 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演

    求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...

  10. 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]

    数字表格 Time Limit: 50 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...

随机推荐

  1. Kafka 的稳定性

    一.事务 1. 事务简介 1.1 事务场景 producer发的多条消息组成⼀个事务这些消息需要对consumer同时可⻅或者同时不可⻅ producer可能会给多个topic,多个partition ...

  2. composition api和react hooks的对比

    一.  我的走位:   保持中立 1. 各有各的好处,  谁也别说谁 2. 一个东西带来的好处, 相应的副作用肯定也有, 人无完人 二 .  vue3 的composition api 和   rea ...

  3. JS:&&运算符

    &&逻辑运算符 当&&连接语句时,两边的语句会转化为布尔类型 1.两边条件都为true时,结果才为true: 2.如果有一个为false,结果就为false: 3.当第 ...

  4. BUUCTF-ningen

    ningen 从16进制看可以发现其中有压缩包,存在着504b0304,使用binwalk分离即可 压缩包带密码,根据提示是四位纯数字 使用ARCHPR破解即可

  5. SAP OOALV 添加状态灯

    *&---------------------------------------------------------------------* INCLUDE <icon>. T ...

  6. ansible对文件内容操作

    ansible lineinfile 简介 lineinfile该模块是操作文件中的每一行内容,他是按照行为单位的,和下面的replace模块并不冲突. 修改匹配行,如果不存在就会添加 tasks: ...

  7. linux下的nginx日志自动备份压缩--日志切割机

    部署完毕nginx之后,发现自己的/var/log/nginx/*log的日志不会压缩,一直都是一个文本写日志, 时间久了,日志文件内存过于增加,将会导致在日志添加过程效率降低,延长时间. 默认安装的 ...

  8. springboot java -jar指定启动的jar外部配置文件

    Limited Setting Effect 中文描述 Java 8 -Xbootclasspath:<path> Sets the search path for bootstrap c ...

  9. Redis三种模式——主从复制,哨兵模式,集群

    一.Redis主从复制作用 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式. 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复:实际上是一种服务的冗余. 负 ...

  10. WPS衍生新软件,填补一大缺憾,让office汗颜,Excel用户很开心

    首先,向大家报告一个好消息 WPS今天宣布品牌升级,有了更明确的品牌定位:专注创新的国民办公软件.WPS已有34年的历史了,自1988年诞生之日起,它在求伯君和雷军的带领下,一路披荆斩棘,虽有坎坷,但 ...