Crash的数字表格 (莫比乌斯反演)
Crash的数字表格
Description
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
Input
输入的第一行包含两个正整数,分别表示N和M。
Output
输出一个正整数,表示表格中所有数的和mod 20101009的值。
Sample Input
4 5
Sample Output
122
数据规模和约定
100%的数据满足N, M ≤ 10^7。
题解
我们不妨设 N < M ,这样好做些
很容易就可以得出,我们想要的答案是
枚举lcm不方便,我们用gcd
我们枚举gcd,上式就等于
我们把d分之一右边的式子拿出来处理,设
我们发现这个不好求,我们先求一个比较容易的,设
我们发现右边括号里的就是 ,可以用等差数列求和公式直接套,那么
由于我们发现F(n)和f(n)有这样的关系:
那么用一下莫比乌斯反演:
我们把它代入前面的ans:
然后我们求d和的前缀和,再分块就行。
这里可能很多人不理解这个分块是什么(我刚看题解的时候也不知道),我就解释一下
由于xd在一定的区间 [l , r] 中波动时, 的值是不变的,所以我们每次就直接算这个区间,中间不变,旁边的求d和的前缀和就可以解决,这样可以大大减少时间复杂度,两重循环下来就是O(n)了。
CODE
zxy AK了,%%%%%%%%
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<iostream>
#define MAXN 10000005
#define LL long long
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
//#pragma GCC optimize(2)
//#pragma G++ optimize(3)
//#define int LL
using namespace std;
inline int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
return x * f;
}
int zxy = 20101009;
int n,m,i,j,k,s,o;
int p[MAXN],cnt,mu[MAXN];
bool f[MAXN];
void sieve(int n) {
mu[1] = 1;
for(int i = 2;i <= n;i ++) {
if(!f[i]) {
p[++ cnt] = i;
mu[i] = -1;
}
for(int j = 1;j <= cnt && i * p[j] <= n;j ++) {
f[i * p[j]] = 1;
if(i % p[j] == 0) {
mu[i * p[j]] = 0;
break;
}
else mu[i * p[j]] = -mu[i];
}
}
for(int i = 1;i <= n;i ++) mu[i] = ((LL)mu[i] * i % zxy * i + mu[i-1]) % zxy;
return ;
}
inline int dx(int a,int b) {
return 1ll*(a + b) * (b - a + 1) / 2ll % zxy;
}
int solve(int n,int m) {
LL ans = 0,ans2 = 0;int ii,jj;
for(int i = 1;i <= n;i = ii + 1) {
ii = min(n / (n / i),m / (m / i));
int nd = n / i,md = m / i; ans2 = 0;
for(int j = 1;j <= nd;j = jj + 1) {
jj = min(nd / (nd / j),md / (md / j));
ans2 = (ans2 + (0ll+mu[jj] - mu[j-1]) * dx(1,nd/j) % zxy * dx(1,md/j) % zxy) % zxy;
}
ans = (ans + 1ll * ans2 * dx(i,ii) % zxy) % zxy;
}
return (ans + zxy) % zxy;
}
signed main() {
n = read();m = read();
if(n > m) swap(n,m);
sieve(m);
printf("%d",solve(n,m));
return 0;
}
Crash的数字表格 (莫比乌斯反演)的更多相关文章
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演
求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...
- 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]
数字表格 Time Limit: 50 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...
随机推荐
- 内网 Ubuntu 20.04 搭建 docusaurus 项目(或前端项目)的环境(mobaxterm、tigervnc、nfs、node)
内网 Ubuntu 20.04 搭建 docusaurus 项目(或前端项目)的环境 背景 内网开发机是 win7,只能安装 node 14 以下,而 spug 的文档项目采用的是 Facebook ...
- flink-执行模式
flink的执行模式 flink既能处理离线数据,也能处理实时数据,在1.12.0版本以前,批数据返回的数据集合是dataSet,对应一套dataSet的api,从1.12.0版本以后,flink实现 ...
- Tensor的组合与分块
>>> a = torch.Tensor([[1,2],[3,4]])>>> atensor([[1., 2.], [3., 4.]]) >>> ...
- 全新升级的AOP框架Dora.Interception[1]: 编程体验
多年之前利用IL Emit写了一个名为Dora.Interception(github地址,觉得不错不妨给一颗星)的AOP框架.前几天利用Roslyn的Source Generator对自己为公司写的 ...
- BUUCTF-神秘龙卷风
神秘龙卷风 通过提示知道压缩包密码是四位纯数字,通过爆破得到 得到一串编码 看样子应该是brainfuck编码 flag{e4bbef8bdf9743f8bf5b727a9f6332a8}
- wcf .net webService和 .net webApi的联系与差异
首先,我们需要清楚它们的概念,然后才能走好下一步. wcf是对于ASMX,.Net Remoting,Enterprise Service,WSE,MSMQ等技术的整合,它是一种重量级消息交互框架,广 ...
- Flink1.13.1源码解析-Application on yarn(一)
本篇文章讲述 Flink Application On Yarn 提交模式下,从命令提交到 AM 容器创建 1.脚本入口 flink run-application -t yarn-applicati ...
- Windows 启动过程
引言 启动过程是我们了解操作系统的第一个环节.了解 Windows 的启动过程,可以帮助我们解决一些启动的问题,也能帮助我们了解 Windows 的整体结构. 以下内容将分为[加载内核].[内核初始化 ...
- Java 内存模型,或许应该这么理解
大家好,我是树哥. 在前面一段时间,我连续写了几篇关于并发编程的文章: 从 CPU 讲起,深入理解 Java 内存模型! - 陈树义的博客 深入理解 happens-before 原则 - 陈树义的博 ...
- 方法引用(Method References)
* 方法引用的使用 * * 1.使用情境:当要传递给Lambda体的操作,已经有实现的方法了,可以使用方法引用! * * 2.方法引用,本质上就是Lambda表达式,而Lambda表达式作为函数式接口 ...