现在用牛顿法来实现一元函数求极值问题

首先给出这样一个问题,如果有这么一个函数$f(x) = x^6+x$,那么如何求这个函数的极值点

先在jupyter上简单画个图形

%matplotlib inline
import numpy as np
x = np.linspace(-1.3,1.3,1000)
plt.scatter(x,x**6+x)
plt.show()

用牛顿法求极值的话,那就要用到泰勒展开

$f(x) \approx f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2}f''(x_0){(x-x_0)}^2$

注意,这里的$x_0$是一个起始点,我们要求$x$,而极值点必须要$f'(x)=0$,而不是这里面的$f'(x_0)=0$,所以这里我们左右两边进行求导,得到

$f'(x)=f'(x_0)+f''(x_0)(x-x_0)$

这里令$f'(x)=0$,则$f'(x_0)+f''(x_0)(x-x_0)=0$,那么即可得到$x = x_0-\frac{f'(x_0)}{f''(x_0)}$,一直迭代则得到

$x_{n+1} = x_n-\frac{f'(x_n)}{f''(x_n)}$

那么我们可以设置一个精度,如果在精度范围内,即可停止迭代

# 牛顿法求极值
# 函数为x**6+x
# orgin函数是初始函数
def func_origin(x):
result = x**6+x
return result # first是一阶导函数
def func_first(x):
result = 6*x**5+1
return result # second是二阶导函数
def func_second(x):
result = 30*x**4
return result # 迭代,传入精度和初始给定值
def newton(accuracy,x):
count = 1
new_x = x
acc = accuracy + 1
while acc > accuracy:
print("final %d round is %.6f"%(count,new_x))
acc = abs(func_first(new_x))
# print("acc",acc)
x_origin = func_origin(new_x)
x_first = func_first(new_x)
x_second = func_second(new_x)
new_x = new_x - x_first/x_second
count += 1
newton(1e-06,10)

final 1 round is 10.000000
final 2 round is 7.999997
...
final 35 round is -0.698860
final 36 round is -0.698827

同时,因为二阶导可能为0,又或者其他原因,实际上我们可能不去计算二阶导,而把二阶导设置为定值(本例不太适用,可尝试更改一下看看结果)

尝试另外一例,函数为:$f(x) = -x^2+4x$,那么其一阶导为$-2x+4$,其二阶导为$-2$

# 牛顿法求极值
# 函数为-x**2+4*x
# orgin函数是初始函数
def func_origin(x):
result = -x**2+4*x
return result # first是一阶导函数
def func_first(x):
result = -2*x+4
return result # second是二阶导函数
def func_second(x):
return -2 # 迭代,传入精度和初始给定值
def newton(accuracy,x):
count = 1
new_x = x
acc = accuracy + 1
while acc > accuracy:
print("final %d round is %.6f"%(count,new_x))
acc = abs(func_first(new_x))
# print("acc",acc)
x_origin = func_origin(new_x)
x_first = func_first(new_x)
x_second = func_second(new_x)
new_x = new_x - x_first/x_second
count += 1

在这里我们发现不论初始值设为多少,都是两步到达终点,究其原因,一元二次函数太过简单,非常容易求,比如修改一元二次函数为$f(x) = -4x^2+4x$

# 牛顿法求极值
# 函数为-x**2+4*x
# orgin函数是初始函数
def func_origin(x):
result = -4*x**2+4*x
return result # first是一阶导函数
def func_first(x):
result = -8*x+4
return result # second是二阶导函数
def func_second(x):
return -8 # 迭代,传入精度和初始给定值
def newton(accuracy,x):
count = 1
new_x = x
acc = accuracy + 1
while acc > accuracy:
print("final %d round is %.6f"%(count,new_x))
acc = abs(func_first(new_x))
# print("acc",acc)
x_origin = func_origin(new_x)
x_first = func_first(new_x)
x_second = func_second(new_x)
new_x = new_x - x_first/x_second
count += 1
newton(1e-06,1.3)

final 1 round is 1.300000
final 2 round is 0.500000

如果还要深究的话,想要弄明白为什么前面的一元六次函数要迭代那么多次,而一元二次函数总是只要两次

就需要弄明白泰勒展开,因为一开始我们的一元六次对应的泰勒展开,是近似的,实际上展开的三次及以上被我们抛弃了

而这些三次项,在我们后面的一元二次函数中,是高阶无穷小,舍去对结果无影响,自然只需要两次即可

牛顿法在西瓜书上公式3.29中就有应用,就是用的当前点减去二阶导分之一阶导

python牛顿法求一元多次函数极值的更多相关文章

  1. Python编写“求一元二次方程的解”

    #求一元二次方程的解 import math def equation(a,b,c): h=b*b-4*a*c #一元二次方程的解,百度来的 if h>=0: x1=(-b+math.sqrt( ...

  2. 【Python实践-1】求一元二次方程的两个解

    知识点: import sys, sys模块包含了与Python解释器和它的环境有关的函数. “sys”是“system”的缩写.sys.exit() 中途退出程序, (注:0是正常退出,其他为不正常 ...

  3. python二分法、牛顿法求根

    二分法求根 思路:对于一个连续函数,左值f(a)*右值f(b)如果<0,那么在这个区间内[a,b]必存在一个c使得f(c)=0 那么思路便是取中间点,分成两段区间,然后对这两段区间分别再比较,跳 ...

  4. [洛谷U62364]三次函数极值

    U62364 三次函数极值 题面 给定一个三次函数\(f(x)=a_3x^3+a_2x^2+a_1x+a_0\) 求其极值. 格式 输入包括一行四个整数\(a_3,a_2,a_1,a_0\) 输出包括 ...

  5. Python学习【第九篇】函数

    函数 函数是什么? 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 在学习函数之前,一直遵循:面向过程编程,即:根据业务逻辑从上而下实现功能,其往往用一段代码来实现指定功能,开发过 ...

  6. 翻译《Writing Idiomatic Python》(二):函数、异常

    原书参考:http://www.jeffknupp.com/blog/2012/10/04/writing-idiomatic-python/ 上一篇:翻译<Writing Idiomatic ...

  7. MATLAB学习笔记(七)——MATLAB解方程与函数极值

    (一)线性方程组求解 包含n个未知数,由n个方程构成的线性方程组为: 其矩阵表示形式为: 其中 一.直接求解法 1.左除法 x=A\b; 如果A是奇异的,或者接近奇异的.MATLAB会发出警告信息的. ...

  8. OpenJudge计算概论-求一元二次方程的根【含复数根的计算、浮点数与0的大小比较】

    /*====================================================================== 求一元二次方程的根 总时间限制: 1000ms 内存限 ...

  9. Python学习入门教程,字符串函数扩充详解

    因有用户反映,在基础文章对字符串函数的讲解太过少,故写一篇文章详细讲解一下常用字符串函数.本文章是对:程序员带你十天快速入门Python,玩转电脑软件开发(三)中字符串函数的详解与扩充. 如果您想学习 ...

随机推荐

  1. 关于 DispatcherServlet.properties 文件

    1.文件位置 2.文件内容 3.文件作用 前端控制器会从 DispatcherServlet.properties 文件中加载 HandlerMapping(处理器映射器).HandlerAdapte ...

  2. 谷歌浏览器postman插件安装,亲测可用

    将谷歌浏览器进入扩展程序,将crx文件拖入即可. https://pan.baidu.com/s/1rIEe9RSby5EgTkygSx_dDA 百度云链接: https://pan.baidu.co ...

  3. jsp页面学习之"javascript:void(0)"的使用

    javascript:void(0) 仅仅表示一个死链接 如果是个# javascript:void(#),就会出现跳到顶部的情况,搜集了一下解决方法 1:<a href="####& ...

  4. 汽车中的V流程开发

    各步骤的简介各步骤的简介 (1)Control Design and offline Simulation:算法模型构建和离线仿真(基于模型的设计).算法工程师用Matlab模型实现算法:并实施离线仿 ...

  5. 用Weex开发的V2EX三端app,附探坑总结

    项目地址 git传送门(内附项目预览) Weex环境配置 npm install -g weex npm install -g weexpack # weex客户端的cli npm install - ...

  6. 定制卡牌式 banner

    HTML <template> <view > <swiper class='swiperClass' autoplay interval="2000" ...

  7. echarts中boundaryGap属性

    boundaryGap:false boundaryGap:true 代码处: xAxis: { type: "category", data: ["06-01" ...

  8. 将对象push到数组中组成对象数组

    let items = { key:'', value:'' } for(let i = 0;i<len;i++){ items.value = _this.ills[i].sName; ite ...

  9. 中小学数学卷子自动生成程序--对G同学的代码分析

    前几天,在课程要求下完成了个人项目的项目工程编写,即一个中小学数学卷子自动生成程序. 程序主要功能是用户预设账户登录后可以选择等级进行对应的小中高的数学卷子对应出题生成txt文本. 本文针对partn ...

  10. python---实现单例模式

    """ 单例模式 单利模式是一种设计模式, 应用该模式的类只会生成一个实例, 可以保证在程序的不同位置 都可以且仅可以取到同一个对象实例. 如果实例不存在, 会创建一个实 ...