AVL Tree (1) - Definition, find and Rotation
1. 定义
- (15-1) [AVL tree]:
- 一棵空二叉树是 AVL tree;
- 若 T 是一棵非空二叉树, 则 T 满足以下两个条件时, T 是一棵 AVL tree:
- T_LeftSubtree 和 T_RightSubtree 是 AVL tree.
- \(| h_{Left} - h_{Right}| \leq 1\).
- [AVL search tree]: AVL tree + binary search tree.
- AVL tree 的高度 \(h=O(\log{n})\)
- [balance foctor] 平衡因子可能取值为
-1
,0
,1
;
对于 nodex
, \(bf(x)\) 定义为: \(h_{x\_LeftSubtree} - h_{x\_RightSubtree}\).
AVL Tree 的宗旨在于使 BST 保持平衡, 进而避免 BST 过度倾斜 (极端情况下 BST 有可能成为链表) .
2. btNode 和 AVLTree 的定义
<utility>
头文件提供了 std::pair
的定义, 便于使用融合 key 类型和 value 类型的复合类型.
<iostream>
头文件提供的输出方法由 private method preOrder
使用, 以测试代码正确性.
Click to show the codes
// AVL Tree
#include <utility>
#include <iostream>
/**
* @brief Binary tree node.
* @tparam T Should be std::pair<Key_Type, Element_Type> in binary search tree.
*/
template<class T>
struct btNode
{
T data;
btNode<T>* left, * right;
// Constructor for btNode.
btNode(T d = {}, btNode<T>* l = nullptr, btNode<T>* r = nullptr) :
data(d), left(l), right(r) {}
};
template<class K, class E>
class AVLTree
{
public:
// Constructor for AVLTree.
AVLTree() :root(nullptr) {}
// @brief PreOrder ouput.
void preOrder() { preOrder(this->root); }
public:
// @brief Find the node with key {tKey} and return its address.
btNode<std::pair<K, E>>* find(const K& theKey) const;
// @brief [Iteration] Create a node with {tPair} and insert it to the tree.
void insert_I(const std::pair<K, E>& tPair);
// @brief [Recursion] Create a node with {tPair} and invoke method {m_insert_R}.
void insert_R(const std::pair<K, E>& tPair);
// @brief [Iteration] Erase the node with key {tKey}.
void erase_I(const K& tKey);
// @brief [Recursion] Erase the node with key {tKey}.
void erase_R(const K& tKey);
private: // Rotate methods.
// @brief Right rotate subtree whose root is {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rightRotate(parentTarget->left)
inline btNode<std::pair<K, E>>* rightRotate(btNode<std::pair<K, E>>* tRoot);
// @brief Left rotate subtree whose root is {tRoot}, return {tRoot->right} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = leftRotate(parentTarget->left);
inline btNode<std::pair<K, E>>* leftRotate(btNode<std::pair<K, E>>* tRoot);
// @brief For LL case, right rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = llRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* llRotation(btNode<std::pair<K, E>>* tRoot);
// @brief For RR case, left rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rrRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* rrRotation(btNode<std::pair<K, E>>* tRoot);
// @brief For LR case, left rotate {tRoot->left}, right rotate {tRoot}, return {tRoot->left->right}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = lrRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* lrRotation(btNode<std::pair<K, E>>* tRoot);
// @brief For RL case, right rotate {tRoot->right}, left rotate {tRoot}, return {tRoot->right->left}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rlRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* rlRoattion(btNode<std::pair<K, E>>* tRoot);
private:
// @brief Private recurse method to insert.
btNode<std::pair<K, E>>* m_insert_R(btNode<std::pair<K, E>>* tRoot, btNode<std::pair<K, E>>* tNode);
// @brief Private recurse method to erase.
btNode<std::pair<K, E>>* m_erase_R(btNode<std::pair<K, E>>* tRoot, const K& tKey);
// @brief Private recurse method for preorder output.
void preOrder(btNode<std::pair<K, E>>* tRoot);
private:
btNode<std::pair<K, E>>* root;
};
template<class K, class E>
void AVLTree<K, E>::preOrder(btNode<std::pair<K, E>>* tRoot)
{
if (!tRoot) return;
std::cout << tRoot->data.second;
preOrder(tRoot->left);
preOrder(tRoot->right);
}
3. Find
解释可以参照 BST 的 find
方法.
Click to show the codes
// @brief Find the node with key {tKey} and return its address.
template<class K, class E>
btNode<std::pair<K, E>>* AVLTree<K, E>::find(const K& theKey) const
{
// {keyNode} traverse the tree, searching for matched node.
btNode<std::pair<K, E>>* keyNode = root;
// Iteration ends if {keyNode} is nullptr.
while (keyNode) {
if (theKey < keyNode->data.first) {
keyNode = keyNode->left;
} else if (theKey > keyNode->element.first) {
keyNode = keyNode->right;
}
// ELSE: {keyNode->data.first} equals {tKey}.
else {
return keyNode;
}
}
// No matching pair.
return nullptr;
}
4. Left Rotate & Right Rotate
在探讨何时要旋转以及如何旋转之前, 我们不妨先实现两个单纯的左右旋转方法.
上图中左边是向右旋转 rightRotate
, 右边是向左旋转 leftRotate
.
很直观, 也没什么好多说的, 上代码.
Click to show the codes
// @brief Right rotate subtree whose root is {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rightRotate(parentTarget->left)
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::rightRotate(btNode<std::pair<K, E>>* tRoot)
{
btNode<std::pair<K, E>>* new_tRoot = tRoot->left;
tRoot->left = new_tRoot->right;
new_tRoot->right = tRoot;
return new_tRoot;
}
// @brief Left rotate subtree whose root is {tRoot}, return {tRoot->right} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = leftRotate(parentTarget->left)
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::leftRotate(btNode<std::pair<K, E>>* tRoot)
{
btNode<std::pair<K, E>>* new_tRoot = tRoot->right;
tRoot->right = new_tRoot->left;
new_tRoot->left = tRoot;
return new_tRoot;
}
5. 4 Cases for Rotation
AVL Tree 保持平衡的方法是计算 balance factor 后进行旋转.
下面四张图展示了需要旋转的 4 种情况以及旋转的方式.
实现四种情况的旋转的代码:
Click to show the codes
// @brief For LL case, right rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = llRotation(parentTarget->left);
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::llRotation(btNode<std::pair<K, E>>* tRoot)
{
return rightRotate(tRoot);
}
// @brief For LL case, left rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rrRotation(parentTarget->left);
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::rrRotation(btNode<std::pair<K, E>>* tRoot)
{
return leftRotate(tRoot);
}
// @brief For LR case, left rotate {tRoot->left}, right rotate {tRoot}, return {tRoot->left->right}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = lrRotation(parentTarget->left);
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::lrRotation(btNode<std::pair<K, E>>* tRoot)
{
tRoot->left = leftRotate(tRoot->left);
return rightRotate(tRoot);
}
// @brief For RL case, right rotate {tRoot->right}, left rotate {tRoot}, return {tRoot->right->left}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rlRotation(parentTarget->left);
template<class K,class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::rlRoattion(btNode<std::pair<K, E>>* tRoot)
{
tRoot->right = rightRotate(tRoot->right);
return leftRotate(tRoot);
}
Reference |
(1) Data Structures, Algoritms, and Applications in C++, Sartaj Sahni
(2) AVL Tree | Set 1 (Insertion), princiraj1992, rathbhupendra, Akanksha_Rai, sohamshinde04, nocturnalstoryteller, rdtank, kaiwenzheng644, hardikkoriintern
AVL Tree (1) - Definition, find and Rotation的更多相关文章
- AVL Tree Insertion
Overview AVL tree is a special binary search tree, by definition, any node, its left tree height and ...
- 04-树5 Root of AVL Tree
平衡二叉树 LL RR LR RL 注意画图理解法 An AVL tree is a self-balancing binary search tree. In an AVL tree, the he ...
- 1066. Root of AVL Tree (25)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- 1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child su ...
- 树的平衡 AVL Tree
本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lg ...
- 1123. Is It a Complete AVL Tree (30)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- A1123. Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- A1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
随机推荐
- 配置svn,httpd启动报错 Job for httpd.service failed because the control process exited with error code. See "systemctl status httpd.service" and "journalctl -xe" for details.
查看httpd的状态,发现80端口被占用,因为我的nginx的80端口. systemctl status httpd.service 解决: 把Apache的端口该成别的端口 vi /etc/ht ...
- docker安装node
#1.拉取镜像 docker pull node:latest #2.运行 docker run -itd --name node-test --restart=always node #--rest ...
- ArrayList分析1-循环、扩容、版本
ArrayList分析1-循环.扩容.版本 转载请注明出处 https://www.cnblogs.com/funnyzpc/p/16407733.html 前段时间抽空看了下ArrayList的源码 ...
- tauri+vue开发小巧的跨OS桌面应用-股票体检
最近打算写一个用于股票体检的软件,比如股权质押比过高的股票不合格,ROE小于10的股票不合格,PE大于80的股票不合格等等等等,就像给人做体检一样给股票做个体检.也实现了一些按照技术指标.基本面自动选 ...
- Ant Design Vue 走马灯实现单页多张图片轮播
最近的项目有个需求是,这种单页多图一次滚动一张图片的轮播效果,项目组件库是antd 然而用了antd的走马灯是这样子的 我们可以看到官网给的api是没有这种功能,百度上也多是在css上动刀,那样也就毕 ...
- idea 内置tomcat jersey 上传文件报403错误
Request processing failed; nested exception is com.sun.jersey.api.client.UniformInterfaceException: ...
- fiddler5+雷电模拟器4.0对app抓包设置
这次项目刚好需要对微信小程序进行抓包分析,二话不说拿起手机咔咔一顿连接,发现在备用机苹果上抓包正常,但主的安卓机上证书怎么装都失败,原来安卓7版本以后对用户自行安装的证书不再信任,所以无法抓包. 因为 ...
- jdbc 05: 查询结果集
jdbc连接mysql,查询结果集 package com.examples.jdbc.o5_结果集查询; import java.sql.*; import java.util.ResourceBu ...
- “杀死” App 上的疑难崩溃
在移动应用性能方面,崩溃带来的影响是最为严重的,程序崩了可以打断用户正在进行的操作体验,造成关键业务中断.用户留存率下降.品牌口碑变差.生命周期价值下降等影响.很多公司将崩溃率作为优先级最高的技术指标 ...
- 基于图的深度优先搜索策略(耿7.10)--------西工大noj
代码 代码 #include <stdio.h> #include <stdlib.h> #include <string.h> typedef struct ...