1. 定义

  1. (15-1) [AVL tree]:

    1. 一棵空二叉树是 AVL tree;
    2. T 是一棵非空二叉树, 则 T 满足以下两个条件时, T 是一棵 AVL tree:
      • T_LeftSubtreeT_RightSubtree 是 AVL tree.
      • \(| h_{Left} - h_{Right}| \leq 1\).
  2. [AVL search tree]: AVL tree + binary search tree.
  3. AVL tree 的高度 \(h=O(\log{n})\)
  4. [balance foctor] 平衡因子可能取值为 -1, 0, 1;

    对于 node x, \(bf(x)\) 定义为: \(h_{x\_LeftSubtree} - h_{x\_RightSubtree}\).

AVL Tree 的宗旨在于使 BST 保持平衡, 进而避免 BST 过度倾斜 (极端情况下 BST 有可能成为链表) .

2. btNode 和 AVLTree 的定义

<utility> 头文件提供了 std::pair 的定义, 便于使用融合 key 类型和 value 类型的复合类型.

<iostream> 头文件提供的输出方法由 private method preOrder 使用, 以测试代码正确性.

Click to show the codes
// AVL Tree

#include <utility>
#include <iostream> /**
* @brief Binary tree node.
* @tparam T Should be std::pair<Key_Type, Element_Type> in binary search tree.
*/
template<class T>
struct btNode
{
T data;
btNode<T>* left, * right;
// Constructor for btNode.
btNode(T d = {}, btNode<T>* l = nullptr, btNode<T>* r = nullptr) :
data(d), left(l), right(r) {}
}; template<class K, class E>
class AVLTree
{
public:
// Constructor for AVLTree.
AVLTree() :root(nullptr) {}
// @brief PreOrder ouput.
void preOrder() { preOrder(this->root); } public:
// @brief Find the node with key {tKey} and return its address.
btNode<std::pair<K, E>>* find(const K& theKey) const;
// @brief [Iteration] Create a node with {tPair} and insert it to the tree.
void insert_I(const std::pair<K, E>& tPair);
// @brief [Recursion] Create a node with {tPair} and invoke method {m_insert_R}.
void insert_R(const std::pair<K, E>& tPair);
// @brief [Iteration] Erase the node with key {tKey}.
void erase_I(const K& tKey);
// @brief [Recursion] Erase the node with key {tKey}.
void erase_R(const K& tKey); private: // Rotate methods.
// @brief Right rotate subtree whose root is {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rightRotate(parentTarget->left)
inline btNode<std::pair<K, E>>* rightRotate(btNode<std::pair<K, E>>* tRoot);
// @brief Left rotate subtree whose root is {tRoot}, return {tRoot->right} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = leftRotate(parentTarget->left);
inline btNode<std::pair<K, E>>* leftRotate(btNode<std::pair<K, E>>* tRoot);
// @brief For LL case, right rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = llRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* llRotation(btNode<std::pair<K, E>>* tRoot);
// @brief For RR case, left rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rrRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* rrRotation(btNode<std::pair<K, E>>* tRoot);
// @brief For LR case, left rotate {tRoot->left}, right rotate {tRoot}, return {tRoot->left->right}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = lrRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* lrRotation(btNode<std::pair<K, E>>* tRoot);
// @brief For RL case, right rotate {tRoot->right}, left rotate {tRoot}, return {tRoot->right->left}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rlRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* rlRoattion(btNode<std::pair<K, E>>* tRoot); private:
// @brief Private recurse method to insert.
btNode<std::pair<K, E>>* m_insert_R(btNode<std::pair<K, E>>* tRoot, btNode<std::pair<K, E>>* tNode);
// @brief Private recurse method to erase.
btNode<std::pair<K, E>>* m_erase_R(btNode<std::pair<K, E>>* tRoot, const K& tKey);
// @brief Private recurse method for preorder output.
void preOrder(btNode<std::pair<K, E>>* tRoot);
private:
btNode<std::pair<K, E>>* root;
}; template<class K, class E>
void AVLTree<K, E>::preOrder(btNode<std::pair<K, E>>* tRoot)
{
if (!tRoot) return;
std::cout << tRoot->data.second;
preOrder(tRoot->left);
preOrder(tRoot->right);
}

3. Find

解释可以参照 BST 的 find 方法.

Click to show the codes
// @brief Find the node with key {tKey} and return its address.
template<class K, class E>
btNode<std::pair<K, E>>* AVLTree<K, E>::find(const K& theKey) const
{
// {keyNode} traverse the tree, searching for matched node.
btNode<std::pair<K, E>>* keyNode = root;
// Iteration ends if {keyNode} is nullptr.
while (keyNode) {
if (theKey < keyNode->data.first) {
keyNode = keyNode->left;
} else if (theKey > keyNode->element.first) {
keyNode = keyNode->right;
}
// ELSE: {keyNode->data.first} equals {tKey}.
else {
return keyNode;
}
}
// No matching pair.
return nullptr;
}

4. Left Rotate & Right Rotate

在探讨何时要旋转以及如何旋转之前, 我们不妨先实现两个单纯的左右旋转方法.

上图中左边是向右旋转 rightRotate , 右边是向左旋转 leftRotate .

很直观, 也没什么好多说的, 上代码.

Click to show the codes
// @brief Right rotate subtree whose root is {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rightRotate(parentTarget->left)
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::rightRotate(btNode<std::pair<K, E>>* tRoot)
{
btNode<std::pair<K, E>>* new_tRoot = tRoot->left;
tRoot->left = new_tRoot->right;
new_tRoot->right = tRoot;
return new_tRoot;
} // @brief Left rotate subtree whose root is {tRoot}, return {tRoot->right} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = leftRotate(parentTarget->left)
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::leftRotate(btNode<std::pair<K, E>>* tRoot)
{
btNode<std::pair<K, E>>* new_tRoot = tRoot->right;
tRoot->right = new_tRoot->left;
new_tRoot->left = tRoot;
return new_tRoot;
}

5. 4 Cases for Rotation

AVL Tree 保持平衡的方法是计算 balance factor 后进行旋转.

下面四张图展示了需要旋转的 4 种情况以及旋转的方式.







实现四种情况的旋转的代码:

Click to show the codes
// @brief For LL case, right rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = llRotation(parentTarget->left);
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::llRotation(btNode<std::pair<K, E>>* tRoot)
{
return rightRotate(tRoot);
} // @brief For LL case, left rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rrRotation(parentTarget->left);
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::rrRotation(btNode<std::pair<K, E>>* tRoot)
{
return leftRotate(tRoot);
} // @brief For LR case, left rotate {tRoot->left}, right rotate {tRoot}, return {tRoot->left->right}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = lrRotation(parentTarget->left);
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::lrRotation(btNode<std::pair<K, E>>* tRoot)
{
tRoot->left = leftRotate(tRoot->left);
return rightRotate(tRoot);
} // @brief For RL case, right rotate {tRoot->right}, left rotate {tRoot}, return {tRoot->right->left}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rlRotation(parentTarget->left);
template<class K,class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::rlRoattion(btNode<std::pair<K, E>>* tRoot)
{
tRoot->right = rightRotate(tRoot->right);
return leftRotate(tRoot);
}

Reference |

(1) Data Structures, Algoritms, and Applications in C++, Sartaj Sahni

(2) AVL Tree | Set 1 (Insertion), princiraj1992, rathbhupendra, Akanksha_Rai, sohamshinde04, nocturnalstoryteller, rdtank, kaiwenzheng644, hardikkoriintern

AVL Tree (1) - Definition, find and Rotation的更多相关文章

  1. AVL Tree Insertion

    Overview AVL tree is a special binary search tree, by definition, any node, its left tree height and ...

  2. 04-树5 Root of AVL Tree

    平衡二叉树 LL RR LR RL 注意画图理解法 An AVL tree is a self-balancing binary search tree. In an AVL tree, the he ...

  3. 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  4. 1066. Root of AVL Tree

    An AVL tree is a self-balancing binary search tree.  In an AVL tree, the heights of the two child su ...

  5. 树的平衡 AVL Tree

    本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lg ...

  6. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  7. A1123. Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. A1066. Root of AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  9. PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

随机推荐

  1. 配置svn,httpd启动报错 Job for httpd.service failed because the control process exited with error code. See "systemctl status httpd.service" and "journalctl -xe" for details.

    查看httpd的状态,发现80端口被占用,因为我的nginx的80端口. systemctl status httpd.service  解决: 把Apache的端口该成别的端口 vi /etc/ht ...

  2. docker安装node

    #1.拉取镜像 docker pull node:latest #2.运行 docker run -itd --name node-test --restart=always node #--rest ...

  3. ArrayList分析1-循环、扩容、版本

    ArrayList分析1-循环.扩容.版本 转载请注明出处 https://www.cnblogs.com/funnyzpc/p/16407733.html 前段时间抽空看了下ArrayList的源码 ...

  4. tauri+vue开发小巧的跨OS桌面应用-股票体检

    最近打算写一个用于股票体检的软件,比如股权质押比过高的股票不合格,ROE小于10的股票不合格,PE大于80的股票不合格等等等等,就像给人做体检一样给股票做个体检.也实现了一些按照技术指标.基本面自动选 ...

  5. Ant Design Vue 走马灯实现单页多张图片轮播

    最近的项目有个需求是,这种单页多图一次滚动一张图片的轮播效果,项目组件库是antd 然而用了antd的走马灯是这样子的 我们可以看到官网给的api是没有这种功能,百度上也多是在css上动刀,那样也就毕 ...

  6. idea 内置tomcat jersey 上传文件报403错误

    Request processing failed; nested exception is com.sun.jersey.api.client.UniformInterfaceException: ...

  7. fiddler5+雷电模拟器4.0对app抓包设置

    这次项目刚好需要对微信小程序进行抓包分析,二话不说拿起手机咔咔一顿连接,发现在备用机苹果上抓包正常,但主的安卓机上证书怎么装都失败,原来安卓7版本以后对用户自行安装的证书不再信任,所以无法抓包. 因为 ...

  8. jdbc 05: 查询结果集

    jdbc连接mysql,查询结果集 package com.examples.jdbc.o5_结果集查询; import java.sql.*; import java.util.ResourceBu ...

  9. “杀死” App 上的疑难崩溃

    在移动应用性能方面,崩溃带来的影响是最为严重的,程序崩了可以打断用户正在进行的操作体验,造成关键业务中断.用户留存率下降.品牌口碑变差.生命周期价值下降等影响.很多公司将崩溃率作为优先级最高的技术指标 ...

  10. 基于图的深度优先搜索策略(耿7.10)--------西工大noj

    ​ 代码 代码 #include <stdio.h> #include <stdlib.h> #include <string.h> typedef struct ...