1. 定义

  1. (15-1) [AVL tree]:

    1. 一棵空二叉树是 AVL tree;
    2. T 是一棵非空二叉树, 则 T 满足以下两个条件时, T 是一棵 AVL tree:
      • T_LeftSubtreeT_RightSubtree 是 AVL tree.
      • \(| h_{Left} - h_{Right}| \leq 1\).
  2. [AVL search tree]: AVL tree + binary search tree.
  3. AVL tree 的高度 \(h=O(\log{n})\)
  4. [balance foctor] 平衡因子可能取值为 -1, 0, 1;

    对于 node x, \(bf(x)\) 定义为: \(h_{x\_LeftSubtree} - h_{x\_RightSubtree}\).

AVL Tree 的宗旨在于使 BST 保持平衡, 进而避免 BST 过度倾斜 (极端情况下 BST 有可能成为链表) .

2. btNode 和 AVLTree 的定义

<utility> 头文件提供了 std::pair 的定义, 便于使用融合 key 类型和 value 类型的复合类型.

<iostream> 头文件提供的输出方法由 private method preOrder 使用, 以测试代码正确性.

Click to show the codes
// AVL Tree

#include <utility>
#include <iostream> /**
* @brief Binary tree node.
* @tparam T Should be std::pair<Key_Type, Element_Type> in binary search tree.
*/
template<class T>
struct btNode
{
T data;
btNode<T>* left, * right;
// Constructor for btNode.
btNode(T d = {}, btNode<T>* l = nullptr, btNode<T>* r = nullptr) :
data(d), left(l), right(r) {}
}; template<class K, class E>
class AVLTree
{
public:
// Constructor for AVLTree.
AVLTree() :root(nullptr) {}
// @brief PreOrder ouput.
void preOrder() { preOrder(this->root); } public:
// @brief Find the node with key {tKey} and return its address.
btNode<std::pair<K, E>>* find(const K& theKey) const;
// @brief [Iteration] Create a node with {tPair} and insert it to the tree.
void insert_I(const std::pair<K, E>& tPair);
// @brief [Recursion] Create a node with {tPair} and invoke method {m_insert_R}.
void insert_R(const std::pair<K, E>& tPair);
// @brief [Iteration] Erase the node with key {tKey}.
void erase_I(const K& tKey);
// @brief [Recursion] Erase the node with key {tKey}.
void erase_R(const K& tKey); private: // Rotate methods.
// @brief Right rotate subtree whose root is {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rightRotate(parentTarget->left)
inline btNode<std::pair<K, E>>* rightRotate(btNode<std::pair<K, E>>* tRoot);
// @brief Left rotate subtree whose root is {tRoot}, return {tRoot->right} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = leftRotate(parentTarget->left);
inline btNode<std::pair<K, E>>* leftRotate(btNode<std::pair<K, E>>* tRoot);
// @brief For LL case, right rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = llRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* llRotation(btNode<std::pair<K, E>>* tRoot);
// @brief For RR case, left rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rrRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* rrRotation(btNode<std::pair<K, E>>* tRoot);
// @brief For LR case, left rotate {tRoot->left}, right rotate {tRoot}, return {tRoot->left->right}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = lrRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* lrRotation(btNode<std::pair<K, E>>* tRoot);
// @brief For RL case, right rotate {tRoot->right}, left rotate {tRoot}, return {tRoot->right->left}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rlRotation(parentTarget->left);
inline btNode<std::pair<K, E>>* rlRoattion(btNode<std::pair<K, E>>* tRoot); private:
// @brief Private recurse method to insert.
btNode<std::pair<K, E>>* m_insert_R(btNode<std::pair<K, E>>* tRoot, btNode<std::pair<K, E>>* tNode);
// @brief Private recurse method to erase.
btNode<std::pair<K, E>>* m_erase_R(btNode<std::pair<K, E>>* tRoot, const K& tKey);
// @brief Private recurse method for preorder output.
void preOrder(btNode<std::pair<K, E>>* tRoot);
private:
btNode<std::pair<K, E>>* root;
}; template<class K, class E>
void AVLTree<K, E>::preOrder(btNode<std::pair<K, E>>* tRoot)
{
if (!tRoot) return;
std::cout << tRoot->data.second;
preOrder(tRoot->left);
preOrder(tRoot->right);
}

3. Find

解释可以参照 BST 的 find 方法.

Click to show the codes
// @brief Find the node with key {tKey} and return its address.
template<class K, class E>
btNode<std::pair<K, E>>* AVLTree<K, E>::find(const K& theKey) const
{
// {keyNode} traverse the tree, searching for matched node.
btNode<std::pair<K, E>>* keyNode = root;
// Iteration ends if {keyNode} is nullptr.
while (keyNode) {
if (theKey < keyNode->data.first) {
keyNode = keyNode->left;
} else if (theKey > keyNode->element.first) {
keyNode = keyNode->right;
}
// ELSE: {keyNode->data.first} equals {tKey}.
else {
return keyNode;
}
}
// No matching pair.
return nullptr;
}

4. Left Rotate & Right Rotate

在探讨何时要旋转以及如何旋转之前, 我们不妨先实现两个单纯的左右旋转方法.

上图中左边是向右旋转 rightRotate , 右边是向左旋转 leftRotate .

很直观, 也没什么好多说的, 上代码.

Click to show the codes
// @brief Right rotate subtree whose root is {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rightRotate(parentTarget->left)
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::rightRotate(btNode<std::pair<K, E>>* tRoot)
{
btNode<std::pair<K, E>>* new_tRoot = tRoot->left;
tRoot->left = new_tRoot->right;
new_tRoot->right = tRoot;
return new_tRoot;
} // @brief Left rotate subtree whose root is {tRoot}, return {tRoot->right} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = leftRotate(parentTarget->left)
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::leftRotate(btNode<std::pair<K, E>>* tRoot)
{
btNode<std::pair<K, E>>* new_tRoot = tRoot->right;
tRoot->right = new_tRoot->left;
new_tRoot->left = tRoot;
return new_tRoot;
}

5. 4 Cases for Rotation

AVL Tree 保持平衡的方法是计算 balance factor 后进行旋转.

下面四张图展示了需要旋转的 4 种情况以及旋转的方式.







实现四种情况的旋转的代码:

Click to show the codes
// @brief For LL case, right rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = llRotation(parentTarget->left);
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::llRotation(btNode<std::pair<K, E>>* tRoot)
{
return rightRotate(tRoot);
} // @brief For LL case, left rotate subtree {tRoot}, return {tRoot->left} as new root.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rrRotation(parentTarget->left);
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::rrRotation(btNode<std::pair<K, E>>* tRoot)
{
return leftRotate(tRoot);
} // @brief For LR case, left rotate {tRoot->left}, right rotate {tRoot}, return {tRoot->left->right}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = lrRotation(parentTarget->left);
template<class K, class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::lrRotation(btNode<std::pair<K, E>>* tRoot)
{
tRoot->left = leftRotate(tRoot->left);
return rightRotate(tRoot);
} // @brief For RL case, right rotate {tRoot->right}, left rotate {tRoot}, return {tRoot->right->left}.
// e.g. To rotate {parentTarget->left} : parentTarget->left = rlRotation(parentTarget->left);
template<class K,class E>
inline btNode<std::pair<K, E>>* AVLTree<K, E>::rlRoattion(btNode<std::pair<K, E>>* tRoot)
{
tRoot->right = rightRotate(tRoot->right);
return leftRotate(tRoot);
}

Reference |

(1) Data Structures, Algoritms, and Applications in C++, Sartaj Sahni

(2) AVL Tree | Set 1 (Insertion), princiraj1992, rathbhupendra, Akanksha_Rai, sohamshinde04, nocturnalstoryteller, rdtank, kaiwenzheng644, hardikkoriintern

AVL Tree (1) - Definition, find and Rotation的更多相关文章

  1. AVL Tree Insertion

    Overview AVL tree is a special binary search tree, by definition, any node, its left tree height and ...

  2. 04-树5 Root of AVL Tree

    平衡二叉树 LL RR LR RL 注意画图理解法 An AVL tree is a self-balancing binary search tree. In an AVL tree, the he ...

  3. 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  4. 1066. Root of AVL Tree

    An AVL tree is a self-balancing binary search tree.  In an AVL tree, the heights of the two child su ...

  5. 树的平衡 AVL Tree

    本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lg ...

  6. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  7. A1123. Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. A1066. Root of AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  9. PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

随机推荐

  1. 更强的 JsonPath 兼容性及性能测试之2022版(Snack3,Fastjson2,jayway.jsonpath)

    2022年了,重新做了一份json path的兼容性与性能测试.三个市面上流行框架比较性测试. 免责声明:可能测试得方式不对而造成不科学的结果(另外,机器不同结果会有不同),可以留言指出来.以下测试数 ...

  2. Tapdata Cloud 版本上新!率先支持数据校验、类型映射等6大新功能

    Tapdata Cloud cloud.tapdata.net Tapdata Cloud 是国内首家异构数据库实时同步云平台,目前支持 Oracle.MySQL.PG.SQL Server.Mong ...

  3. 循环控制-break语句和continue语句

    break关键字的用法有常见的两种: 1.可以用switch语句当中,一旦执行,整个switch语句立刻结束 2.还可以用在循环语句当中,一定执行,整个循环语句立刻结束,打断循环 关于循环的选择,有一 ...

  4. Jenkins安装推荐插件前,更换插件源

    网上找了很多都解决不了问题,直到看到jenkins-update-center,还有一个问题,就是尽量在实体机上装,感觉docker坑太多.... 安装jenkins,以Debian系为例 安装包在这 ...

  5. RESTAPI 版本控制策略【eolink 翻译】

    微服务,是现阶段开发建设云原生应用程序的流行趋向.API 版本控制有益于在辨别出所需要的调节时加速迭代更新的速度. 根据微服务架构的关键构件其一,是 API 的设计和规范.针对 API,版本控制是不可 ...

  6. CF605A Sorting Railway Cars 题解

    To CF 这道题依题意可得最终答案为序列长度-最长子序列长度. 数据范围至 \(100000\) 用 \(O(n^2)\) 的复杂度肯定会炸. 用 \(O(nlogn)\) 的复杂度却在第 \(21 ...

  7. DFS序和7种模型

    DFS序就是将树的节点按照先根的顺序遍历得到的节点顺序 性质:一个子树全在一个连续的区间内,可以与线段树和树状数组搭配使用 很好写,只需在dfs中加几行代码即可. 代码: void dfs(ll u, ...

  8. 高通cDSP简单编程例子(实现查询高通cDSP使用率、签名),RK3588 npu使用率查询

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...

  9. 如何有效地开发 Jmix 扩展组件

    扩展组件的概念在使用 Jmix 框架开发中扮演着非常重要的角色.我们将在本文探索什么是扩展组件以及 Jmix Studio 在扩展组件开发和应用程序模块化方面能给开发者带来什么帮助. Jmix 中的扩 ...

  10. docker容器技术基础入门

    目录 docker容器技术基础入门 容器(Container) 传统虚拟化与容器的区别 Linux容器技术 Linux Namespaces CGroups LXC docker基本概念 docker ...