题面

You are given a sequence \(A = (A_1, A_2, ..., A_N)\).

You may perform the following operation exactly once.

Choose an integer \(M\) at least \(2\). Then, for every integer \(i\) (\(1 \leq i \leq N\)), replace \(A_i\) with the remainder when \(A_i\) is divided by \(M\).

For instance, if \(M = 4\) is chosen when \(A = (2, 7, 4)\), \(A\) becomes \((2 \bmod 4, 7 \bmod 4, 4 \bmod 4) = (2, 3, 0)\).

Find the minimum possible number of different elements in \(A\) after the operation.

Constraints

  • \(2 \leq N \leq 2 \times 10^5\)
  • \(0 \leq A_i \leq 10^9\)
  • All values in the input are integers.

简要题意

给出一个长度为 \(N\) 的序列 \(A\),你需要找到一个整数 \(M(M \geq 2)\),使得所有 \(A_i \bmod m\) 的值种数最小,输出种数。

如 \(A=[1,4,8]\),则可以取 \(M=2\),\(A_1 \bmod M=1,A_2 \bmod M=0,A_3 \bmod M=0\),共 \(2\) 种,这是最优的。

\(2 \leq N \leq 2 \times 10^5,0 \leq A_i \leq 10^9\)

思路

这道题答案只可能是 \(1\) 或 \(2\)。因为如果答案大于 \(2\),我们可以取 \(M=2\) 这样种数最多是 \(2\)。

先排序。

不难发现,答案为 \(1\) 则代表存在 \(M\),使得 \(A_1 \equiv A_2 \equiv \cdots \equiv A_{n-1} \equiv A_n \pmod{M}\),根据同余定义可知 \(A_2-A_1 \mid A_3-A_2 \mid \cdots A_{n-1}-A_{n-2} \mid A_n-A_{n-1}\), 可以推出 \(\gcd\limits_{i=2}^{n}{(A_i-A_{i-1})}=m\)。

所以如果 \(\gcd\limits_{i=2}^{n}{(A_i-A_{i-1})} \gt 1\),答案是 \(1\),否则是 \(2\)。

代码

#include <bits/stdc++.h>
#define int long long
using namespace std; int n;
int a[1000005];
int rrr; signed main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
sort(a+1,a+n+1);
rrr=a[2]-a[1];
for(int i=3;i<=n;i++){
rrr=__gcd(rrr,a[i]-a[i-1]);
}
if(rrr!=1){
cout<<1;
}
else{
cout<<2;
}
return 0;
}

AtCoder Regular Contest 148 A - mod M的更多相关文章

  1. AtCoder Regular Contest 096

    AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...

  2. Atcoder regular Contest 073(C - Sentou)

    Atcoder regular Contest 073(C - Sentou) 传送门 每个人对开关的影响区间为a[i]--a[i]+t,因此此题即为将所有区间离散化后求所有独立区间的长度和 #inc ...

  3. Atcoder regular Contest 073(D - Simple Knapsack)

    Atcoder regular Contest 073(D - Simple Knapsack) 传送门 因为 w1≤wi≤w1+3 这个特殊条件,我们可以将每个重量离散化一下,同时多开一维记录选择的 ...

  4. AtCoder Beginner Contest 148 题解

    目录 AtCoder Beginner Contest 148 题解 前言 A - Round One 题意 做法 程序 B - Strings with the Same Length 题意 做法 ...

  5. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  6. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  7. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  8. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  9. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

  10. AtCoder Regular Contest 095

    AtCoder Regular Contest 095 C - Many Medians 题意: 给出n个数,求出去掉第i个数之后所有数的中位数,保证n是偶数. \(n\le 200000\) 分析: ...

随机推荐

  1. 各大厂 C/C++ 编程规范详解

    来吧!各大厂知名规范体系~ 各有特点各有侧重~ Google C++ Style Guide Google C++ Style Guide,[中文版],简称 GSG,谷歌的 C++ 编程规范,在国内有 ...

  2. python tcp select 多路复用

    1 #!/usr/bin/python 2 # -*- coding: UTF-8 -*- 3 # 文件名:tcpserver.py 4 5 import socket 6 import time 7 ...

  3. 死磕Java面试系列:深拷贝与浅拷贝的实现原理

    深拷贝与浅拷贝的问题,也是面试中的常客.虽然大家都知道两者表现形式不同点在哪里,但是很少去深究其底层原理,也不知道怎么才能优雅的实现一个深拷贝.其实工作中也常常需要实现深拷贝,今天一灯就带大家一块深入 ...

  4. pinpoint部署

    pinpoint是一个分析大型分布式系统的平台,提供解决方案来处理海量跟踪数据,主要面向基于tomcat的Java 应用. pinpoint使用HBASE储存数据. 下面介绍pinpoint部署及应用 ...

  5. java学习之spirng的aop

    AOP技术 0x00前言 什么是AOP技术:在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期间动态代理实现程序功能的统一维护的 ...

  6. 在 Tomcat 10.x 上部署 SpringMVC 5.x

    在Tomcat10.x 上部署 SpringMVC 5.x的时候,项目一直无法访问 运行截图 原因 Tomcat10基于Jakarta EE 9,其中api的包名已经从javax更改到jakarat ...

  7. 2022春每日一题:Day 38

    题目[USACO17JAN]Promotion Counting P 从根节点dfs一遍,树状数组维护进入和出去时这个节点的贡献,一减就是答案 代码: #include <cstdio> ...

  8. Kubernetes IPVS和IPTABLES

    个人名片: 对人间的热爱与歌颂,可抵岁月冗长 Github‍:念舒_C.ying CSDN主页️:念舒_C.ying 个人博客 :念舒_C.ying Kubernetes IPVS和IPTABLES ...

  9. Python冷知识:如何找出新版本增加或删除了哪些标准库?

    "内置电池"是 Python 最为显著的特性之一,它提供了 200 多个开箱即用的标准库.但是,历经了 30 多年的发展,很多标准库已经成为了不得不舍弃的历史包袱,因为它们正在&q ...

  10. 北极星Polaris+Gateway动态网关配置!

    springcloudtencetn 父工程: pom <?xml version="1.0" encoding="UTF-8"?> <pro ...