如果想直接使用我下列的库

可以直接go get 我的github

go get -u github.com/hybpjx/InverseAlgorithm

md5 加密——不可逆

MD5信息摘要算法是一种被广泛使用的密码散列函数,可以产生出一个128位(16进制,32个字符)的散列值(hash value),用于确保信息传输完整一致。

import (
"crypto/md5"
"encoding/hex"
"fmt"
)

第一种

// MD5Str md5验证
func MD5Str(src string) string {
h := md5.New()
h.Write([]byte(src)) // 需要加密的字符串为
fmt.Printf("%s\n", hex.EncodeToString(h.Sum(nil))) // 输出加密结果
return hex.EncodeToString(h.Sum(nil))
}

第二种

// MD5Str2 md5验证
func MD5Str2(src string) string {
return fmt.Sprintf("%x", md5.Sum([]byte(src)))
}

hmacsha 加密——不可逆

HMAC是密钥相关的哈希运算消息认证码(Hash-based Message Authentication Code)的缩写,

它通过一个标准算法,在计算哈希的过程中,把key混入计算过程中。

和我们自定义的加salt算法不同,Hmac算法针对所有哈希算法都通用,无论是MD5还是SHA-1。采用Hmac替代我们自己的salt算法,可以使程序算法更标准化,也更安全。

hmac-md5加密

//key随意设置 data 要加密数据

func Hmac(key, data string) string {
// 创建对应的md5哈希加密算法
hash:= hmac.New(md5.New, []byte(key)) hash.Write([]byte(data)) return hex.EncodeToString(hash.Sum([]byte(""))) }

hamacsha1 加密

// HmacSha1 hmacSha1加密 key随意设置 data 要加密数据
func HmacSha1(src, key string) string {
m := hmac.New(sha1.New, []byte(key))
m.Write([]byte(src))
return hex.EncodeToString(m.Sum(nil))
}

hamacsha 256 加密

// HmacSHA256 hmacSha256验证  key随意设置 data 要加密数据
func HmacSHA256(key, src string) string {
m := hmac.New(sha256.New, []byte(key))
m.Write([]byte(src))
return hex.EncodeToString(m.Sum(nil))
}

hmacsha512加密

// HmacSHA512 hmacSha512验证
func HmacSHA512(key, src string) string {
m := hmac.New(sha512.New, []byte(key))
m.Write([]byte(src))
return hex.EncodeToString(m.Sum(nil))
}

hamasha 调用

package main

import (
"crypto/hmac"
"crypto/md5"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/hex"
"fmt"
) // Hmac hmac验证 key随意设置 data 要加密数据
func Hmac(key, data string) string { hash := hmac.New(md5.New, []byte(key)) // 创建对应的md5哈希加密算法 hash.Write([]byte(data)) return hex.EncodeToString(hash.Sum([]byte(""))) } // HmacSHA256 hmacSha256加密 key随意设置 data 要加密数据
func HmacSHA256(key, src string) string {
m := hmac.New(sha256.New, []byte(key))
m.Write([]byte(src))
return hex.EncodeToString(m.Sum(nil))
} // HmacSHA512 hmacSha512加密 key随意设置 data 要加密数据
func HmacSHA512(key, src string) string {
m := hmac.New(sha512.New, []byte(key))
m.Write([]byte(src))
return hex.EncodeToString(m.Sum(nil))
} // HmacSha1 hmacSha1加密 key随意设置 data 要加密数据
func HmacSha1(src, key string) string {
m := hmac.New(sha1.New, []byte(key))
m.Write([]byte(src))
return hex.EncodeToString(m.Sum(nil))
} // SHA256Str sha256加密
func SHA256Str(src string) string {
h := sha256.New()
h.Write([]byte(src)) // 需要加密的字符串为
// fmt.Printf("%s\n", hex.EncodeToString(h.Sum(nil))) // 输出加密结果
return hex.EncodeToString(h.Sum(nil))
} func main() {
hmac_ := Hmac("hybpjx", "始識")
hamcsha1 := HmacSha1("hybpjx", "始識")
hamcsha256 := HmacSHA256("hybpjx", "始識")
hamacsha512 := HmacSHA512("hybpjx", "始識")
fmt.Println(hmac_)
fmt.Println(hamcsha1)
fmt.Println(hamcsha256)
fmt.Println(hamacsha512)
}

结果

d8801f70df7891764116e1ac003f7189

60d68e01c8a86f3b87e4e147e9f0fadce2a69661

b3f8ddf991288036864761a55046877adfe4f78ec9a89bb63932af92689b139f

b9b1fca0fe91522482ee1b2161e57d67482af6ef371614365b918c31ce774f9126ed627e378a063145f404ff2de7bd84f8e4798c385662ef4749e58e9209ca63

Sha 加密——不可逆

sha1

SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。

func Sha1(data string) string {
sha1_ := sha1.New()
sha1_.Write([]byte(data))
return hex.EncodeToString(sha1_.Sum([]byte("")))
}

sha256

SHA256算法使用的哈希值长度是256位。这是一个抽象类。此类的唯一实现是SHA256Managed。

// SHA256 sha256加密
func SHA256(src string) string {
h := sha256.New()
// 需要加密的字符串为
h.Write([]byte(src))
// fmt.Printf("%s\n", hex.EncodeToString(h.Sum(nil))) // 输出加密结果
return hex.EncodeToString(h.Sum(nil))
}

sha512

SHA (Secure Hash Algorithm,译作安全散列算法) 是美国国家安全局 (NSA) 设计,美国国家标准与技术研究院 (NIST) 发布的一系列密码散列函数。

// SHA512 sha512加密
func SHA512(src string) string {
h := sha512.New()
// 需要加密的字符串为
h.Write([]byte(src))
// fmt.Printf("%s\n", hex.EncodeToString(h.Sum(nil))) // 输出加密结果
return hex.EncodeToString(h.Sum(nil))
}

sha调用

package main

import (
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/hex"
"fmt"
) func Sha1(data string) string {
sha1_ := sha1.New()
sha1_.Write([]byte(data))
return hex.EncodeToString(sha1_.Sum([]byte("")))
} // SHA256 sha256加密
func SHA256(src string) string {
h := sha256.New()
// 需要加密的字符串为
h.Write([]byte(src))
// fmt.Printf("%s\n", hex.EncodeToString(h.Sum(nil))) // 输出加密结果
return hex.EncodeToString(h.Sum(nil))
} // SHA512 sha512加密
func SHA512(src string) string {
h := sha512.New()
// 需要加密的字符串为
h.Write([]byte(src))
// fmt.Printf("%s\n", hex.EncodeToString(h.Sum(nil))) // 输出加密结果
return hex.EncodeToString(h.Sum(nil))
} func main() {
_sha1 := Sha1("始識")
_sha256 := SHA256("始識")
_sha512 := SHA512("始識")
fmt.Println(_sha1)
fmt.Println(_sha256)
fmt.Println(_sha512)
}

结果

7bac01cc58a26f3cb280b0466794a89441279946

6ef99e6d3fe34a46afcdc438435728fe95ffdab18e389ddd31609edd6729b11d

0c04e9b79f488646d0eac6f65468248507939d643cc92709b14eb0d18d8f13db509ed5ccd3312d6c234408185a4611a42525dce9e8d32255640f56a2f836635a

base 加密 解密

加密

// BASE64StdEncode base编码
func BASE64StdEncode(src string) string {
return base64.StdEncoding.EncodeToString([]byte(src))
}

解密

// BASE64StdDecode base解码
func BASE64StdDecode(src string) string {
a, err := base64.StdEncoding.DecodeString(src)
if err != nil {
_ = fmt.Errorf("解密失败,%v\n", err)
}
return string(a)
}

base64 调用

package main

import (
"encoding/base64"
"fmt"
) // BASE64StdEncode base编码
func BASE64StdEncode(src string) string {
return base64.StdEncoding.EncodeToString([]byte(src))
} // BASE64StdDecode base解码
func BASE64StdDecode(src string) string {
a, err := base64.StdEncoding.DecodeString(src)
if err != nil {
_ = fmt.Errorf("解密失败,%v\n", err)
}
return string(a)
} func main() {
encodeBase64 := BASE64StdEncode("hybpjx")
decodeBase64 := BASE64StdDecode(encodeBase64)
fmt.Println(encodeBase64)
fmt.Println(decodeBase64)
}

结果

aHlicGp4

hybpjx

AES 加密

高级加密标准(英语:Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。



由于加密和解密的秘钥是相同的,所以AES为对称加密

package main

import (
"bytes"
"crypto/aes"
"crypto/cipher"
"encoding/base64"
"fmt"
) func PKCS7Padding(ciphertext []byte, blockSize int) []byte {
padding := blockSize - len(ciphertext)%blockSize
padtext := bytes.Repeat([]byte{byte(padding)}, padding)
return append(ciphertext, padtext...)
} func PKCS7UnPadding(origData []byte) []byte {
length := len(origData)
unpadding := int(origData[length-1])
return origData[:(length - unpadding)]
} //AES加密
func AesEncrypt(origData, key []byte) ([]byte, error) {
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
blockSize := block.BlockSize()
origData = PKCS7Padding(origData, blockSize)
blockMode := cipher.NewCBCEncrypter(block, key[:blockSize])
crypted := make([]byte, len(origData))
blockMode.CryptBlocks(crypted, origData)
return crypted, nil
} //AES解密
func AesDecrypt(crypted, key []byte) ([]byte, error) {
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
blockSize := block.BlockSize()
blockMode := cipher.NewCBCDecrypter(block, key[:blockSize])
origData := make([]byte, len(crypted))
blockMode.CryptBlocks(origData, crypted)
origData = PKCS7UnPadding(origData)
return origData, nil
} func main() {
text := "今晚打老虎"
AesKey := []byte("0f90023fc9ae101e") //秘钥长度为16的倍数
fmt.Printf("明文: %s\n秘钥: %s\n", text, string(AesKey))
encrypted, err := AesEncrypt([]byte(text), AesKey)
if err != nil {
panic(err)
}
fmt.Printf("加密后: %s\n", base64.StdEncoding.EncodeToString(encrypted))
origin, err := AesDecrypt(encrypted, AesKey)
if err != nil {
panic(err)
}
fmt.Printf("解密后明文: %s\n", string(origin))
}

CBC方式

package main

import (
"bytes"
"crypto/aes"
"crypto/cipher"
"encoding/base64"
"encoding/hex"
"log"
) func AesEncryptCBC(origData []byte, key []byte) (encrypted []byte) {
// 分组秘钥
// NewCipher该函数限制了输入k的长度必须为16, 24或者32
block, _ := aes.NewCipher(key)
blockSize := block.BlockSize() // 获取秘钥块的长度
origData = pkcs5Padding(origData, blockSize) // 补全码
blockMode := cipher.NewCBCEncrypter(block, key[:blockSize]) // 加密模式
encrypted = make([]byte, len(origData)) // 创建数组
blockMode.CryptBlocks(encrypted, origData) // 加密
return encrypted
}
func AesDecryptCBC(encrypted []byte, key []byte) (decrypted []byte) {
block, _ := aes.NewCipher(key) // 分组秘钥
blockSize := block.BlockSize() // 获取秘钥块的长度
blockMode := cipher.NewCBCDecrypter(block, key[:blockSize]) // 加密模式
decrypted = make([]byte, len(encrypted)) // 创建数组
blockMode.CryptBlocks(decrypted, encrypted) // 解密
decrypted = pkcs5UnPadding(decrypted) // 去除补全码
return decrypted
}
func pkcs5Padding(ciphertext []byte, blockSize int) []byte {
padding := blockSize - len(ciphertext)%blockSize
padtext := bytes.Repeat([]byte{byte(padding)}, padding)
return append(ciphertext, padtext...)
}
func pkcs5UnPadding(origData []byte) []byte {
length := len(origData)
unpadding := int(origData[length-1])
return origData[:(length - unpadding)]
}
func main() {
origData := []byte("460154561234") // 待加密的数据
key := []byte("9876787656785679") // 加密的密钥
log.Println("原文:", string(origData)) log.Println("------------------ CBC模式 --------------------")
encrypted := AesEncryptCBC(origData, key)
log.Println("密文(hex):", hex.EncodeToString(encrypted))
log.Println("密文(base64):", base64.StdEncoding.EncodeToString(encrypted))
decrypted := AesDecryptCBC(encrypted, key)
log.Println("解密结果:", string(decrypted))
}

ECB方式

package main

import (
"crypto/aes"
"encoding/base64"
"encoding/hex"
"log"
) func AesEncryptECB(origData []byte, key []byte) (encrypted []byte) {
cipher, _ := aes.NewCipher(generateKey(key))
length := (len(origData) + aes.BlockSize) / aes.BlockSize
plain := make([]byte, length*aes.BlockSize)
copy(plain, origData)
pad := byte(len(plain) - len(origData))
for i := len(origData); i < len(plain); i++ {
plain[i] = pad
}
encrypted = make([]byte, len(plain))
// 分组分块加密
for bs, be := 0, cipher.BlockSize(); bs <= len(origData); bs, be = bs+cipher.BlockSize(), be+cipher.BlockSize() {
cipher.Encrypt(encrypted[bs:be], plain[bs:be])
} return encrypted
}
func AesDecryptECB(encrypted []byte, key []byte) (decrypted []byte) {
cipher, _ := aes.NewCipher(generateKey(key))
decrypted = make([]byte, len(encrypted))
//
for bs, be := 0, cipher.BlockSize(); bs < len(encrypted); bs, be = bs+cipher.BlockSize(), be+cipher.BlockSize() {
cipher.Decrypt(decrypted[bs:be], encrypted[bs:be])
} trim := 0
if len(decrypted) > 0 {
trim = len(decrypted) - int(decrypted[len(decrypted)-1])
} return decrypted[:trim]
}
func generateKey(key []byte) (genKey []byte) {
genKey = make([]byte, 16)
copy(genKey, key)
for i := 16; i < len(key); {
for j := 0; j < 16 && i < len(key); j, i = j+1, i+1 {
genKey[j] ^= key[i]
}
}
return genKey
} func main() {
origData := []byte("460154561234") // 待加密的数据
key := []byte("9876787656785679") // 加密的密钥
log.Println("原文:", string(origData)) log.Println("------------------ ECB模式 --------------------")
encrypted := AesEncryptECB(origData, key)
log.Println("密文(hex):", hex.EncodeToString(encrypted))
log.Println("密文(base64):", base64.StdEncoding.EncodeToString(encrypted))
decrypted := AesDecryptECB(encrypted, key)
log.Println("解密结果:", string(decrypted))
}

CFB 方式

package main

import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"encoding/base64"
"encoding/hex"
"io"
"log"
) func AesEncryptCFB(origData []byte, key []byte) (encrypted []byte) {
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
encrypted = make([]byte, aes.BlockSize+len(origData))
iv := encrypted[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewCFBEncrypter(block, iv)
stream.XORKeyStream(encrypted[aes.BlockSize:], origData)
return encrypted
}
func AesDecryptCFB(encrypted []byte, key []byte) (decrypted []byte) {
block, _ := aes.NewCipher(key)
if len(encrypted) < aes.BlockSize {
panic("ciphertext too short")
}
iv := encrypted[:aes.BlockSize]
encrypted = encrypted[aes.BlockSize:] stream := cipher.NewCFBDecrypter(block, iv)
stream.XORKeyStream(encrypted, encrypted)
return encrypted
}
func main() {
origData := []byte("460154561234") // 待加密的数据
key := []byte("9876787656785679") // 加密的密钥
log.Println("原文:", string(origData)) log.Println("------------------ CFB模式 --------------------")
encrypted := AesEncryptCFB(origData, key)
log.Println("密文(hex):", hex.EncodeToString(encrypted))
log.Println("密文(base64):", base64.StdEncoding.EncodeToString(encrypted))
decrypted := AesDecryptCFB(encrypted, key)
log.Println("解密结果:", string(decrypted))
}

RSA加密

RSA是一种基于公钥密码体制的优秀加密算法,1978年由美国(MIT)的李维斯特(Rivest)、沙米尔(Shamir)、艾德曼(Adleman)提的。

RSA算法是一种分组密码体制算法,它的保密强度是建立在具有大素数因子的合数其因子分解是困难的(基于大数分解的难度)。

公钥和私钥是一对大素数的函数,从一个公钥和密文中恢复出明文的难度等价于分解两个大素数之积。

RSA得到了世界上的最广泛的应用,ISO在1992年颁布的国际标准X.509中,将RSA算法正式纳入国际标准。

RSA加密

package main

import (
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"fmt"
"os"
) // GenerateRSAKey 生成RSA私钥和公钥,保存到文件中
func GenerateRSAKey(bits int){
//GenerateKey函数使用随机数据生成器random生成一对具有指定字位数的RSA密钥
//Reader是一个全局、共享的密码用强随机数生成器
privateKey, err := rsa.GenerateKey(rand.Reader, bits)
if err!=nil{
panic(err)
}
//保存私钥
//通过x509标准将得到的ras私钥序列化为ASN.1 的 DER编码字符串
// X509PrivateKey := x509.MarshalPKCS1PrivateKey(privateKey) // PKCS1 和 9 是不一致的
X509PrivateKey,err := x509.MarshalPKCS8PrivateKey(privateKey)
if err != nil {
fmt.Println(err.Error())
os.Exit(0)
}
//使用pem格式对x509输出的内容进行编码
//创建文件保存私钥
privateFile, err := os.Create("private.pem")
if err!=nil{
panic(err)
}
defer privateFile.Close()
//构建一个pem.Block结构体对象
privateBlock:= pem.Block{Type: "PRIVATE KEY",Bytes:X509PrivateKey}
//将数据保存到文件
pem.Encode(privateFile,&privateBlock)
//保存公钥
//获取公钥的数据
publicKey:=privateKey.PublicKey
//X509对公钥编码
X509PublicKey,err:=x509.MarshalPKIXPublicKey(&publicKey)
if err!=nil{
panic(err)
}
//pem格式编码
//创建用于保存公钥的文件
publicFile, err := os.Create("public.pem")
if err!=nil{
panic(err)
}
defer publicFile.Close()
//创建一个pem.Block结构体对象
publicBlock:= pem.Block{Type: "Public Key",Bytes:X509PublicKey}
//保存到文件
pem.Encode(publicFile,&publicBlock)
} // RsaEncrypt RSA加密
func RsaEncrypt(plainText []byte,path string)[]byte{
//打开文件
file,err:=os.Open(path)
if err!=nil{
panic(err)
}
defer file.Close()
//读取文件的内容
info, _ := file.Stat()
buf:=make([]byte,info.Size())
file.Read(buf)
//pem解码
block, _ := pem.Decode(buf)
//x509解码
publicKeyInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
if err!=nil{
panic(err)
}
//类型断言
publicKey:=publicKeyInterface.(*rsa.PublicKey)
//对明文进行加密
cipherText, err := rsa.EncryptPKCS1v15(rand.Reader, publicKey, plainText)
if err!=nil{
panic(err)
}
//返回密文
return cipherText
} // RsaDecrypt RSA解密
func RsaDecrypt(cipherText []byte,path string) []byte{
//打开文件
file,err:=os.Open(path)
if err!=nil{
panic(err)
}
defer file.Close()
//获取文件内容
info, _ := file.Stat()
buf:=make([]byte,info.Size())
file.Read(buf)
//pem解码
block, _ := pem.Decode(buf)
//X509解码
privateKey, err := x509.ParsePKCS8PrivateKey(block.Bytes)
if err!=nil{
fmt.Println(err.Error())
os.Exit(0)
}
//对密文进行解密
plainText,_:=rsa.DecryptPKCS1v15(rand.Reader,privateKey.(*rsa.PrivateKey),cipherText)
//返回明文
return plainText
} func main(){
// RSA/ECB/PKCS1Padding
// RSA是算法,ECB是分块模式,PKCS1Padding是填充模式 // pkcs1私钥生成openssl genrsa -out pkcs1.pem 1024
// pkcs1转pkcs8私钥 :openssl pkcs8 -in pkcs8.pem -nocrypt -out pkcs1.pem // pkcs1 BEGIN RSA PRIVATE KEY
// pkcs8 BEGIN PRIVATE KEY GenerateRSAKey(1024)
publicPath := "public_key.pem"
privatePath := "private_key.pem" publicPath = "public.pem"
privatePath = "private.pem" txt := []byte("hello")
encrptTxt := RsaEncrypt(txt,publicPath)
decrptCode := RsaDecrypt(encrptTxt,privatePath)
fmt.Println(string(decrptCode)) }

RSA分段加密

package main

import (
"bytes"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"encoding/base64"
"encoding/pem"
"fmt"
"log"
"os"
) func main() {
GenerateRSAKey(2048)
publicPath := "public.pem"
privatePath := "private.pem"
var a = []byte("hello")
encrptTxt, err := RsaEncryptBlock(a, publicPath)
if err != nil {
fmt.Println(err.Error())
}
encodeString := base64.StdEncoding.EncodeToString(encrptTxt)
decodeByte, err := base64.StdEncoding.DecodeString(encodeString)
if err != nil {
panic(err)
}
//生成RSA私钥和公钥,保存到文件中
decrptCode := RSA_Decrypts(decodeByte, privatePath)
fmt.Println(string(decrptCode)) } func GenerateRSAKey(bits int) {
//GenerateKey函数使用随机数据生成器random生成一对具有指定字位数的RSA密钥
//Reader是一个全局、共享的密码用强随机数生成器
privateKey, err := rsa.GenerateKey(rand.Reader, bits)
if err != nil {
panic(err)
}
//保存私钥
//通过x509标准将得到的ras私钥序列化为ASN.1 的 DER编码字符串
// X509PrivateKey := x509.MarshalPKCS1PrivateKey(privateKey) // PKCS1 和 9 是不一致的
X509PrivateKey, err := x509.MarshalPKCS8PrivateKey(privateKey)
if err != nil {
fmt.Println(err.Error())
os.Exit(0)
}
//使用pem格式对x509输出的内容进行编码
//创建文件保存私钥
privateFile, err := os.Create("private.pem")
if err != nil {
panic(err)
}
defer privateFile.Close()
//构建一个pem.Block结构体对象
privateBlock := pem.Block{Type: "PRIVATE KEY", Bytes: X509PrivateKey}
//将数据保存到文件
pem.Encode(privateFile, &privateBlock)
//保存公钥
//获取公钥的数据
publicKey := privateKey.PublicKey
//X509对公钥编码
X509PublicKey, err := x509.MarshalPKIXPublicKey(&publicKey)
if err != nil {
panic(err)
}
//pem格式编码
//创建用于保存公钥的文件
publicFile, err := os.Create("public.pem")
if err != nil {
panic(err)
}
defer publicFile.Close()
//创建一个pem.Block结构体对象
publicBlock := pem.Block{Type: "Public Key", Bytes: X509PublicKey}
//保存到文件
pem.Encode(publicFile, &publicBlock)
} // RSA_Decrypts RSA解密支持分段解密
func RSA_Decrypts(cipherText []byte, path string) []byte {
//打开文件
var bytesDecrypt []byte
file, err := os.Open(path)
if err != nil {
panic(err)
}
defer file.Close()
//获取文件内容
info, _ := file.Stat()
buf := make([]byte, info.Size())
file.Read(buf)
//pem解码
block, _ := pem.Decode(buf)
//X509解码
privateKey, err := x509.ParsePKCS8PrivateKey(block.Bytes)
if err != nil {
fmt.Println(err.Error())
os.Exit(0)
}
p := privateKey.(*rsa.PrivateKey)
keySize := p.Size()
srcSize := len(cipherText)
log.Println("密钥长度", keySize, "密文长度", srcSize)
var offSet = 0
var buffer = bytes.Buffer{}
for offSet < srcSize {
endIndex := offSet + keySize
if endIndex > srcSize {
endIndex = srcSize
}
bytesOnce, err := rsa.DecryptPKCS1v15(rand.Reader, p, cipherText[offSet:endIndex])
if err != nil {
return nil
}
buffer.Write(bytesOnce)
offSet = endIndex
}
bytesDecrypt = buffer.Bytes()
return bytesDecrypt
} // RsaEncryptBlock 公钥加密-分段
func RsaEncryptBlock(src []byte, path string) (bytesEncrypt []byte, err error) {
//打开文件
file, err := os.Open(path)
if err != nil {
panic(err)
}
defer file.Close()
//读取文件的内容
info, _ := file.Stat()
buf := make([]byte, info.Size())
file.Read(buf)
//pem解码
block, _ := pem.Decode(buf)
//x509解码
publicKeyInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
if err != nil {
panic(err)
}
//类型断言
publicKey := publicKeyInterface.(*rsa.PublicKey)
keySize, srcSize := publicKey.Size(), len(src)
log.Println("密钥长度", keySize, "明文长度", srcSize)
offSet, once := 0, keySize-11
buffer := bytes.Buffer{}
for offSet < srcSize {
endIndex := offSet + once
if endIndex > srcSize {
endIndex = srcSize
}
// 加密一部分
bytesOnce, err := rsa.EncryptPKCS1v15(rand.Reader, publicKey, src[offSet:endIndex])
if err != nil {
return nil, err
}
buffer.Write(bytesOnce)
offSet = endIndex
}
bytesEncrypt = buffer.Bytes()
return
}

DES加密

  • DES(Data Encryption)是1977年美国联邦信息处理标准(FIPS)中所采用的一种对称密码(FIPS46-3),一直以来被美国及其他国家的政府和银行等广泛使用。随着计算机的进步,DES已经能够被暴力破解,1997年的DES Challenge I 中用了96天破译密钥,1998年的DES Challenge II-1中用了41天,1998年的DES Challenge II-2中用了56小时,1999年的DES Challenge III 中只用了22小时15分钟。
  • DES是一种将64比特的明文加密成64比特的密文的对称密码算法,它的密钥的长度是56比特。尽管从规格上来说,DES的密钥长度是64比特,但由于每隔7比特会设置一个用于错误检查的比特,因此实质上其密钥长度是56比特。
  • DES 是以64比特的明文(比特序列)为一个单位来进行加密的,这个64比特的单位称为分组 ,一般来说,以分组为单位进行处理的密码算法称为分组密码,DES就是分组密码的一种。
  • DES每次只能加密64比特的数据,如果要加密的明文比较长,就需要对DES加密进行迭代(反复),而迭代的具体方式就称为模式。
  • DES 内部实现理论:在 des 中各个步骤称为轮,整个加密过程进行16轮循环。

内置库完成

加密模式采用ECB、填充方式采用pkcs5padding、密码使用"12345678",输出时经hex编码。自己可以通过一些在线测试工具进行测试,看结果是否一致。

package main

import (
"bytes"
"crypto/cipher"
"crypto/des"
"encoding/hex"
"fmt"
) func main() {
data := []byte("hello world")
key := []byte("12345678")
iv := []byte("43218765") result, err := DesCBCEncrypt(data, key, iv)
if err != nil {
fmt.Println(err)
}
b := hex.EncodeToString(result)
fmt.Println(b)
} func DesCBCEncrypt(data, key, iv []byte) ([]byte, error) {
block, err := des.NewCipher(key)
if err != nil {
return nil, err
} data = pkcs5Padding(data, block.BlockSize())
cryptText := make([]byte, len(data)) blockMode := cipher.NewCBCEncrypter(block, iv)
blockMode.CryptBlocks(cryptText, data)
return cryptText, nil
} func pkcs5Padding(cipherText []byte, blockSize int) []byte {
padding := blockSize - len(cipherText)%blockSize
padText := bytes.Repeat([]byte{byte(padding)}, padding)
return append(cipherText, padText...)
}

使用第三方库

package main

import (
"fmt"
"github.com/marspere/goencrypt"
) func main() {
// key为12345678
// iv为空
// 采用ECB分组模式
// 采用pkcs5padding填充模式
// 输出结果使用base64进行加密
cipher := goencrypt.NewDESCipher([]byte("12345678"), []byte(""), goencrypt.ECBMode, goencrypt.Pkcs7, goencrypt.PrintBase64)
cipherText, err := cipher.DESEncrypt([]byte("hello world"))
if err != nil {
fmt.Println(err)
return
}
fmt.Println(cipherText)
}

3DES加密算法

3DES(或称为Triple DES)是三重数据加密算法(TDEA,Triple Data Encryption Algorithm)块密码的通称。它相当于是对每个数据块应用三次DES加密算法。

由于计算机运算能力的增强,原版DES密码的密钥长度变得容易被暴力破解;3DES即是设计用来提供一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。

还有一个库 非常NB

ECB模式下的3DES算法加解密信息,golang默认只提供CBC模式

这边有golang的加密库,非常厉害

github.com/forgoer/openssl

安装:

go get github.com/thinkoner/openssl

代码如下:

package main

import (
"encoding/base64"
"encoding/hex"
"fmt"
"github.com/forgoer/openssl"
) func main() { //定义密钥,必须是24byte
key := []byte("123456789012345678901234")
fmt.Println("密钥:", key, hex.EncodeToString(key)) //定义明文
src := []byte("0102030109000000030000000F8898E37A7F8F3D742006111118080000FACE05") //3DES-ECB加密
encodeData, _ := openssl.Des3ECBEncrypt(src, key, openssl.ZEROS_PADDING)
encryptBaseData := base64.StdEncoding.EncodeToString(encodeData) fmt.Println("加密后Base64:", encryptBaseData)
fmt.Println("加密后Hex:", hex.EncodeToString(encodeData)) //3DES-ECB解密
decodeBaseData, _ := base64.StdEncoding.DecodeString(encryptBaseData)
decodeData, _ := openssl.Des3ECBDecrypt(decodeBaseData, key, openssl.ZEROS_PADDING) fmt.Println("解密后:", hex.EncodeToString(decodeData))
}

包括 Des的加密解密

以下只举一个例子

srcData := "L0j+JvbeVM0svSpjIwXdE7yTu78wiEszCmW8rwjXY3vrx2nEaUeJ/Rw/c/IRdlxIH+/ro4pykx6ESOkGU1YwM8ddEuuoTg5uPsqQ9/SuNds="
key := []byte("Ctpsp@884*"[:8])
//3DES-ECB解密
decodeBaseData, _ := base64.StdEncoding.DecodeString(srcData)
decodeData, _ := openssl.DesECBDecrypt(decodeBaseData, key, openssl.PKCS5_PADDING)
fmt.Println("解密后:", string(decodeData))

源文件: https://github.com/hybpjx/InverseAlgorithm

Golang 加密方法的更多相关文章

  1. iOS里常见的几种信息编码、加密方法简单总结

    一.MD5 MD5编码是最常用的编码方法之一,是从一段字符串中通过相应特征生成一段32位的数字字母混合码. MD5主要特点是 不可逆,相同数据的MD5值肯定一样,不同数据的MD5值不一样(也不是绝对的 ...

  2. GoLang之方法与接口

    GoLang之方法与接口 Go语言没有沿袭传统面向对象编程中的诸多概念,比如继承.虚函数.构造函数和析构函数.隐藏的this指针等. 方法 Go 语言中同时有函数和方法.方法就是一个包含了接受者的函数 ...

  3. Java中常用的加密方法(JDK)

    加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的内容.大体上分为双向加密和单向加密,而双向加密又分为对称加密和非对称加密(有些 ...

  4. C# 加密总结 一些常见的加密方法

    C# 加密总结 一些常见的加密方法 一 散列数据 代码如下: ? private static string CalculateSHA512Hash(string input)         {   ...

  5. [转载] Java中常用的加密方法

    转载自http://www.iteye.com/topic/1122076/ 加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的 ...

  6. iOS常见的几种加密方法(base64.MD5.Token传值.系统指纹验证。。加密)

    普通加密方法是讲密码进行加密后保存到用户偏好设置中 钥匙串是以明文形式保存,但是不知道存放的具体位置 一. base64加密 base64 编码是现代密码学的基础 基本原理: 原本是 8个bit 一组 ...

  7. Node.js进阶:5分钟入门非对称加密方法

    前言 刚回答了SegmentFault上一个兄弟提的问题<非对称解密出错>.这个属于Node.js在安全上的应用,遇到同样问题的人应该不少,基于回答的问题,这里简单总结下. 非对称加密的理 ...

  8. 加密方法与HTTPS 原理详解

    一:加密方法: 1,对称加密 AES,3DES,DES等,适合做大量数据或数据文件的加解密. 2,非对称加密 如RSA,Rabin.公钥加密,私钥解密.对大数据量进行加解密时性能较低. 二:https ...

  9. 转发:C#加密方法汇总

    转自:C#加密方法汇总 方法一: //须添加对System.Web的引用 using System.Web.Security; ... /// <summary> /// SHA1加密字符 ...

随机推荐

  1. dentry的引用计数不对导致的crash

    [17528853.189372] python invoked oom-killer: gfp_mask=0xd0, order=0, oom_score_adj=-998[17528853.189 ...

  2. 【2022知乎爬虫】我用Python爬虫爬了2300多条知乎评论!

    您好,我是 @马哥python说,一枚10年程序猿. 一.爬取目标 前些天我分享过一篇微博的爬虫: https://www.cnblogs.com/mashukui/p/16414027.html 但 ...

  3. 【Java】学习路径52-Timer计时器实例

    import java.util.Timer; import java.util.TimerTask; public class TimerClass { public static void mai ...

  4. laravel框架(完整上传到数据库,不提交图片)(以提交员工信息为例)

    第一步:使用PHP终端创建一个名为blog的框架 composer create-project --prefer-dist laravel/laravel blog 7.x 创建好之后,在框架中找到 ...

  5. hadoop 不在 sudoers 文件中,此事将被报告。

    问题来源: 使用sudo命令,让hadoop用户使用root身份执行命令时报错: [hadoop@mydocker ~]$ sudo date [sudo] password for hadoop: ...

  6. 第八十四篇:Vue购物车(五) 商品数量的增减

    好家伙, 1.商品数量的增减 我们把商品的数量增减独立出来,写成一个独立的组件Counter <template> <div class="number-container ...

  7. KingbaseES 如何实现Oracle pipelined 功能

    管道函数即是可以返回行集合(可以使嵌套表nested table 或数组 varray)的函数,我们可以像查询物理表一样查询它或者将其赋值给集合变量.KingbaseES 数据库可以用 setof 实 ...

  8. 《网页设计基础——HTML注释与CSS注释》

    网页设计基础--HTML注释与CSS注释       一.HTML注释: 格式: <!-- 在此处书写注释 --> 例如: <html> <head> <ti ...

  9. K8S ingress控制器

    文章转载自: K8S ingress控制器 (一)https://blog.51cto.com/u_13760351/2728917 K8S ingress控制器 (二)https://blog.51 ...

  10. 举例:Network Policies

    本文描述了如何在 Kubernetes 集群中通过创建 NetworkPolicy 的方式来声明网络策略,以管理 Pod 之间的网络通信流量. 前提条件 创建一个Deployment并配置Servic ...