知识点简单总结——minmax容斥

minmax容斥

好像也有个叫法叫最值反演?

就是这样的一个柿子:

\[max(S) = \sum\limits_{ T \subseteq S } min(T) \times (-1)^{|T|-1}
\]

用 $ Max $ 来求 $ Min $ 也一样可行。

证明不太难,所以干脆咕了,随便找个证明

应用

由于期望的线性性,以上公式对于每个元素的期望也是成立的,

可以写作 $ E( max(S) ) = \sum\limits_{T \subseteq S} E( min(T) ) $ 。

这个是比较有用的,因为很明显 $ E( max(S) ) \ne max( E(S) ) $ ,这个是不容易轻易用正常方法求出的。

例题

[HAOI2015]按位或

要求求出 $ E( max(U) ) $ 。

很明显求不出来所以考虑改求 $ E( min(S) ) $ 。

考虑有 $ P( min(T) == k ) = P( S \oplus U ) ^ {k-1} ( 1 - P( S \oplus U ) ) $ 。

几何分布,很容易得出 $ E( min(S) ) = \frac{ 1 }{ 1 - P'( S \oplus U )} $ ,其中 $ P'(S) = \sum\limits_{T \subseteq S} P(T) $ 。

$ FWT $ 变换一下即可出解,注意特判 $ \le eps $ 。

[PKUWC2018]随机游走

依然改求 $ E( min(S) ) $ 。

也就是求经过某个集合中至少一个点时的期望步数。

设 $ f_{S,x} $ 为从 $ x $ 出发,到达 $ S $ 中某个点时的期望步数,很明显 $ E( min(S) ) = f_{S,root} $ 。

\[f_{S,x} = \frac{ f_{ S,fa_{ x } } + \sum\limits_{ y \in son_{ x } } f_{ S,y } }{ deg_{ x } } + 1
\]

为了分离父亲对其贡献,考虑转化成 $ f_{S,x} = A_{x} * f_{ S , fa_{ x } } +B_{x} $ 。

解完之后发现与父亲的值无关,可以直接树形dp。

然后直接minmax容斥就完事了。

扩展minmax容斥

\[\max\limits_{k}(S) = \sum\limits_{ T \subseteq S } min(T) \times (-1)^{|T|-k} \times \binom{|T|-1}{k-1}
\]

$ \max\limits_{k}(S) $ 表示第 $ k $ 大。

证明需要用到二项式定理,也咕了。

依然对期望成立。

例题

重返现世

注意到 $ |n-k| \le 10 $ 。

很明显答案要求 $ E(\min\limits_{k}(U)) $ ,等效于 $ E(\max\limits_{n-k+1}(U)) $ 。

那么求 $ E(min(S)) $ 就好。

问题来了。

$ n \le 1000 $ ,不能直接做。

但是 $ m \le 10000 $ ,可以从这里下手设计dp。

然后再往下的我不会了。

很明显 $ E(min(S)) = \frac{1}{ \sum\limits_{i \in S} p_{i} } $ 。

考虑用dp统计对于每个 $ \sum\limits_{i \in S} p_{i} $ 的值的系数和。

具体的dp设计它咕了。

知识点简单总结——minmax容斥的更多相关文章

  1. 按位或:多项式,FWT,min-max容斥

    Description: 刚开始你有一个数字0,每一秒钟你会随机选择一个$[0,2^n)$的数字,与你手上的数字进行或(C++, C 的 |, Pascal 的 or)操作. 选择数字i的概率是$p_ ...

  2. 【Luogu4707】重返现世(min-max容斥)

    [Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...

  3. HDU - 4336:Card Collector(min-max容斥求期望)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  4. hdu 4336 Card Collector —— Min-Max 容斥

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4336 bzoj 4036 的简单版,Min-Max 容斥即可. 代码如下: #include<cst ...

  5. Min-Max 容斥的证明

    这里有 Min-Max 容斥的证明以及唯一一道博主做过的例题... 上个结论: \[Min\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1} ...

  6. 容斥原理+补集转化+MinMax容斥

    容斥原理的思想大家都应该挺熟悉的,然后补集转化其实就是容斥原理的一种应用. 一篇讲容斥的博文https://www.cnblogs.com/gzy-cjoier/p/9686787.html 当我们遇 ...

  7. UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...

  8. 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)

    题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...

  9. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

随机推荐

  1. NVDA、争渡读屏语音开放API接口

    什么是读屏软件? 读屏软件是一种专为视力障碍人士设计的,能够辅助视障人士操作计算机的工具,它可以将屏幕上显示的内容用语音朗读出来,这样视障人士就可以正常使用电脑了. 知名的屏幕阅读软件国内有争渡读屏. ...

  2. Dubbo源码剖析一之整体架构设计

    Dubbo基础二之架构及处理流程概述 - 池塘里洗澡的鸭子 - 博客园 (cnblogs.com)中进行Dubbo职能上的简单介绍,下面就其内部进行详细探究: 1.Dubbo调用关系 这个图是不是很熟 ...

  3. MCU与MPU的基本区别

    MCU与MPU的基本区别 题记:一般来说,mpu的价格是mcu的数倍. 参考资料: http://www.elecfans.com/d/1564656.html https://zhuanlan.zh ...

  4. 自动同步bing壁纸

    在百度搜东西,经常出来一大坨广告:要么就是复制粘贴文章.完全没有创新,搜索越来越困难.偶尔用一下bing还挺好用. bing的壁纸是真心好看,每天不重样.决定写个脚本同步一下它的壁纸. 一.以我的Wi ...

  5. 施耐德NOE77101后门漏洞分析

    固件下载地址: GitHub - ameng929/NOE77101_Firmware 文件目录结构,这里只列出了一些主要的文件信息: ├── bin ├── ftp ├── fw ├── rdt ├ ...

  6. 【C# 基础概念】抽象类、密封类及类成员

    使用 abstract 关键字可以创建不完整且必须在派生类中实现的类和 class 成员. 使用 sealed 关键字可以防止继承以前标记为 virtual 的类或某些类成员. abstract修饰符 ...

  7. MySQL必知必会学习笔记(详细)

    目录 01 了解SQL 02 MySQL简介 03 使用MySQL 04 检索数据 select, from, distinct, limit, offset 05 排序 order by 06 过滤 ...

  8. k-NN——算法实现

    k-NN 没有特别的训练过程,给定训练集,标签,k,计算待预测特征到训练集的所有距离,选取前k个距离最小的训练集,k个中标签最多的为预测标签 约会类型分类.手写数字识别分类 计算输入数据到每一个训练数 ...

  9. Educational Codeforces Round 110 A-D 题解

      A. Fair Playoff 题目大意:有4个人进行比赛,第一个和第二个比,第三个和第四个比,之后各自的胜者再比,最开始每个人持有一个数字,每场比赛持有数字较大的选手会胜出,问最开始持有数字最大 ...

  10. burpsuite常见问题

    中文乱码问题:https://www.cnblogs.com/bk76120/p/12400092.html 无法抓取本地或局域网其他主机的包 去掉"对于本地地址不使用代理服务器" ...