本文已收录到  AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。

前言

大家好,我是小彭。

在上一篇文章里,我们聊到了 Square 开源的 I/O 框架 Okio 的三个优势:精简且全面的 API、基于共享的缓冲区设计以及超时机制。前两个优势已经分析过了,今天我们来分析 Okio 的超时检测机制。

本文源码基于 Okio v3.2.0。


思维导图:


1. 认识 Okio 的超时机制

超时机制是一项通用的系统设计,能够避免系统长时间阻塞在某些任务上。例如网络请求在超时时间内没有响应,客户端就会提前中断请求,并提示用户某些功能不可用。

1.1 说一下 Okio 超时机制的优势

先思考一个问题,相比于传统 IO 的超时有什么优势呢?我认为主要体现在 2 个方面:

  • 优势 1 - Okio 弥补了部分 IO 操作不支持超时检测的缺陷:

Java 原生 IO 操作是否支持超时,完全取决于底层的系统调用是否支持。例如,网络 Socket 支持通过 setSoTimeout API 设置单次 IO 操作的超时时间,而文件 IO 操作就不支持,使用原生文件 IO 就无法实现超时。

而 Okio 是统一在应用层实现超时检测,不管系统调用是否支持超时,都能提供统一的超时检测机制。

  • 优势 2 - Okio 不仅支持单次 IO 操作的超时检测,还支持包含多次 IO 操作的复合任务超时检测:

Java 原生 IO 操作只能实现对单次 IO 操作的超时检测,无法实现对包含多次 IO 操作的复合任务超时检测。例如,OkHttp 支持配置单次 connect、read 或 write 操作的超时检测,还支持对一次完整 Call 请求的超时检测,有时候单个操作没有超时,但串联起来的完整 call 却超时了。

而 Okio 超时机制和 IO 操作没有强耦合,不仅支持对 IO 操作的超时检测,还支持非 IO 操作的超时检测,所以这种复合任务的超时检测也是可以实现的。

1.2 Timeout 类的作用

Timeout 类是 Okio 超时机制的核心类,Okio 对 Source 输入流和 Sink 输出流都提供了超时机制,我们在构造 InputStreamSource 和 OutputStreamSink 这些流的实现类时,都需要携带 Timeout 对象:

Source.kt

interface Source : Closeable {

    // 返回超时控制对象
fun timeout(): Timeout ...
}

Sink.kt

actual interface Sink : Closeable, Flushable {

    // 返回超时控制对象
actual fun timeout(): Timeout ...
}

Timeout 类提供了两种配置超时时间的方式(如果两种方式同时存在的话,Timeout 会优先采用更早的截止时间):

  • 1、timeoutNanos 任务处理时间: 设置处理单次任务的超时时间,

最终触发超时的截止时间是任务的 startTime + timeoutNanos

  • 2、deadlineNanoTime 截止时间: 直接设置未来的某个时间点,多个任务整体的超时时间点。

Timeout.kt

// hasDeadline 这个属性显得没必要
private var hasDeadline = false // 是否设置了截止时间点
private var deadlineNanoTime = 0L // 截止时间点(单位纳秒)
private var timeoutNanos = 0L // 处理单次任务的超时时间(单位纳秒)

创建 Source 和 Sink 对象时,都需要携带 Timeout 对象:

JvmOkio.kt

// ----------------------------------------------------------------------------
// 输入流
// ---------------------------------------------------------------------------- fun InputStream.source(): Source = InputStreamSource(this, Timeout() /*Timeout 对象*/) // 文件输入流
fun File.source(): Source = InputStreamSource(inputStream(), Timeout.NONE) // Socket 输入流
fun Socket.source(): Source {
val timeout = SocketAsyncTimeout(this)
val source = InputStreamSource(getInputStream(), timeout /*携带 Timeout 对象*/)
// 包装为异步超时
return timeout.source(source)
} // ----------------------------------------------------------------------------
// 输出流
// ---------------------------------------------------------------------------- fun OutputStream.sink(): Sink = OutputStreamSink(this, Timeout() /*Timeout 对象*/) // 文件输出流
fun File.sink(append: Boolean = false): Sink = FileOutputStream(this, append).sink() // Socket 输出流
fun Socket.sink(): Sink {
val timeout = SocketAsyncTimeout(this)
val sink = OutputStreamSink(getOutputStream(), timeout /*携带 Timeout 对象*/)
// 包装为异步超时
return timeout.sink(sink)
}

在 Timeout 类的基础上,Okio 提供了 2 种超时机制:

  • Timeout 是同步超时
  • AsyncTimeout 是异步超时

Okio 框架


2. Timeout 同步超时

Timeout 同步超时依赖于 Timeout#throwIfReached() 方法。

同步超时在每次执行任务之前,都需要先调用 Timeout#throwIfReached() 检查当前时间是否到达超时截止时间。如果超时则会直接抛出超时异常,不会再执行任务。

JvmOkio.kt

private class InputStreamSource(
// 输入流
private val input: InputStream,
// 超时控制
private val timeout: Timeout
) : Source { override fun read(sink: Buffer, byteCount: Long): Long {
// 1、参数校验
if (byteCount == 0L) return 0
require(byteCount >= 0) { "byteCount < 0: $byteCount" }
// 2、检查超时时间
timeout.throwIfReached()
// 3、执行输入任务(已简化)
val bytesRead = input.read(...)
return bytesRead.toLong()
}
...
} private class OutputStreamSink(
// 输出流
private val out: OutputStream,
// 超时控制
private val timeout: Timeout
) : Sink { override fun write(source: Buffer, byteCount: Long) {
// 1、参数校验
checkOffsetAndCount(source.size, 0, byteCount)
// 2、检查超时时间
timeout.throwIfReached()
// 3、执行输入任务(已简化)
out.write(...)
...
}
...
}

看一眼 Timeout#throwIfReached 的源码。 可以看到,同步超时只考虑 “deadlineNanoTime 截止时间”,如果只设置 “timeoutNanos 任务处理时间” 是无效的,我觉得这个设计容易让开发者出错。

Timeout.kt

@Throws(IOException::class)
open fun throwIfReached() {
if (Thread.interrupted()) {
// 传递中断状态
Thread.currentThread().interrupt() // Retain interrupted status.
throw InterruptedIOException("interrupted")
} if (hasDeadline && deadlineNanoTime - System.nanoTime() <= 0) {
// 抛出超时异常
throw InterruptedIOException("deadline reached")
}
}

有必要解释所谓 “同步” 的意思:

同步超时就是指任务的 “执行” 和 “超时检查” 是同步的。当任务超时时,Okio 同步超时不会直接中断任务执行,而是需要检主动查超时时间(Timeout#throwIfReached)来判断是否发生超时,再决定是否中断任务执行。

这其实与 Java 的中断机制是非常相似的:

当 Java 线程的中断标记位置位时,并不是真的会直接中断线程执行,而是主动需要检查中断标记位(Thread.interrupted)来判断是否发生中断,再决定是否中断线程任务。所以说 Java 的线程中断机制是一种 “同步中断”。

可以看出,同步超时存在 “滞后性”:

因为同步超时需要主动检查,所以即使在任务执行过程中发生超时,也必须等到检查时才会发现超时,无法及时触发超时异常。因此,就需要异步超时机制。

同步超时示意图


3. AsyncTimeout 异步超时

  • 异步超时监控进入: 异步超时在每次执行任务之前,都需要先调用 AsyncTimeout#enter() 方法将 AsyncTimeout 挂载到超时队列中,并根据超时截止时间的先后顺序排序,队列头部的节点就是会最先超时的任务;

  • 异步超时监控退出: 在每次任务执行结束之后,都需要再调用 AsyncTimeout#exit() 方法将 AsyncTimeout 从超时队列中移除。

注意: enter() 方法和 eixt() 方法必须成对存在。

AsyncTimeout.kt

open class AsyncTimeout : Timeout() {

    // 是否在等待队列中
private var inQueue = false // 后续指针
private var next: AsyncTimeout? = null // 超时截止时间
private var timeoutAt = 0L // 异步超时监控进入
fun enter() {
check(!inQueue) { "Unbalanced enter/exit" }
val timeoutNanos = timeoutNanos()
val hasDeadline = hasDeadline()
if (timeoutNanos == 0L && !hasDeadline) {
return
}
inQueue = true
scheduleTimeout(this, timeoutNanos, hasDeadline)
} // 异步超时监控退出
// 返回值:是否发生超时(如果节点不存在,说明被 WatchDog 线程移除,即发生超时)
fun exit(): Boolean {
if (!inQueue) return false
inQueue = false
return cancelScheduledTimeout(this)
} // 在 WatchDog 线程调用
protected open fun timedOut() {} companion object {
// 超时队列头节点(哨兵节点)
private var head: AsyncTimeout? = null // 分发超时监控任务
private fun scheduleTimeout(node: AsyncTimeout, timeoutNanos: Long, hasDeadline: Boolean) {
synchronized(AsyncTimeout::class.java) {
// 首次添加监控时,需要启动 Watchdog 线程
if (head == null) {
// 哨兵节点
head = AsyncTimeout()
Watchdog().start()
} // now:当前时间
val now = System.nanoTime()
// timeoutAt 超时截止时间:计算 now + timeoutNanos 和 deadlineNanoTime 的较小值
if (timeoutNanos != 0L && hasDeadline) {
node.timeoutAt = now + minOf(timeoutNanos, node.deadlineNanoTime() - now)
} else if (timeoutNanos != 0L) {
node.timeoutAt = now + timeoutNanos
} else if (hasDeadline) {
node.timeoutAt = node.deadlineNanoTime()
} else {
throw AssertionError()
} // remainingNanos 超时剩余时间:当前时间距离超时发生的时间
val remainingNanos = node.remainingNanos(now)
var prev = head!!
// 线性遍历超时队列,按照超时截止时间将 node 节点插入超时队列
while (true) {
if (prev.next == null || remainingNanos < prev.next!!.remainingNanos(now)) {
node.next = prev.next
prev.next = node
// 如果插入到队列头部,需要唤醒 WatchDog 线程
if (prev === head) {
(AsyncTimeout::class.java as Object).notify()
}
break
}
prev = prev.next!!
}
}
} // 取消超时监控任务
// 返回值:是否超时
private fun cancelScheduledTimeout(node: AsyncTimeout): Boolean {
synchronized(AsyncTimeout::class.java) {
// 线性遍历超时队列,将 node 节点移除
var prev = head
while (prev != null) {
if (prev.next === node) {
prev.next = node.next
node.next = null
return false
}
prev = prev.next
}
// 如果节点不存在,说明被 WatchDog 线程移除,即发生超时
return true
}
}
}
}

同时,在首次添加异步超时监控时,AsyncTimeout 内部会开启一个 WatchDog 守护线程,按照 “检测 - 等待” 模型观察超时队列的头节点:

  • 如果发生超时,则将头节点移除,并回调 AsyncTimeout#timeOut() 方法。这是一个空方法,需要由子类实现来主动取消任务;

  • 如果未发生超时,则 WatchDog 线程会计算距离超时发生的时间间隔,调用 Object#wait(时间间隔) 进入限时等待。

需要注意的是: AsyncTimeout#timeOut() 回调中不能执行耗时操作,否则会影响后续检测的及时性。

有意思的是:我们会发现 Okio 的超时检测机制和 Android ANR 的超时检测机制非常类似,所以我们可以说 ANR 也是一种异步超时机制。

AsyncTimeout.kt

private class Watchdog internal constructor() : Thread("Okio Watchdog") {
init {
// 守护线程
isDaemon = true
} override fun run() {
// 死循环
while (true) {
try {
var timedOut: AsyncTimeout? = null
synchronized(AsyncTimeout::class.java) {
// 取头节点(Maybe wait)
timedOut = awaitTimeout()
// 超时队列为空,退出线程
if (timedOut === head) {
head = null
return
}
}
// 超时发生,触发 AsyncTimeout#timedOut 回调
timedOut?.timedOut()
} catch (ignored: InterruptedException) {
}
}
}
} companion object {
// 超时队列为空时,再等待一轮的时间
private val IDLE_TIMEOUT_MILLIS = TimeUnit.SECONDS.toMillis(60)
private val IDLE_TIMEOUT_NANOS = TimeUnit.MILLISECONDS.toNanos(IDLE_TIMEOUT_MILLIS) @Throws(InterruptedException::class)
internal fun awaitTimeout(): AsyncTimeout? {
// Get the next eligible node.
val node = head!!.next // 如果超时队列为空
if (node == null) {
// 需要再等待 60s 后再判断(例如在首次添加监控时)
val startNanos = System.nanoTime()
(AsyncTimeout::class.java as Object).wait(IDLE_TIMEOUT_MILLIS)
return if (head!!.next == null && System.nanoTime() - startNanos >= IDLE_TIMEOUT_NANOS) {
// 退出 WatchDog 线程
head
} else {
// WatchDog 线程重新取一次
null
}
}
// 计算当前时间距离超时发生的时间
var waitNanos = node.remainingNanos(System.nanoTime()) // 未超时,进入限时等待
if (waitNanos > 0) {
// Waiting is made complicated by the fact that we work in nanoseconds,
// but the API wants (millis, nanos) in two arguments.
val waitMillis = waitNanos / 1000000L
waitNanos -= waitMillis * 1000000L
(AsyncTimeout::class.java as Object).wait(waitMillis, waitNanos.toInt())
return null
} // 超时,将头节点移除
head!!.next = node.next
node.next = null
return node
}
}

异步超时示意图

直接看代码不好理解,我们来举个例子:


4. 举例:OkHttp Call 的异步超时监控

在 OkHttp 中,支持配置一次完整的 Call 请求上的操作时间 callTimeout。一次 Call 请求包含多个 IO 操作的复合任务,使用传统 IO 是不可能监控超时的,所以需要使用 AsyncTimeout 异步超时。

在 OkHttp 的 RealCall 请求类中,就使用了 AsyncTimeout 异步超时:

  • 1、开始任务: 在 execute() 方法中,调用 AsyncTimeout#enter() 进入异步超时监控,再执行请求;

  • 2、结束任务: 在 callDone() 方法中,调用 AsyncTimeout#exit() 退出异步超时监控。分析源码发现:callDone() 不仅在请求正常时会调用,在取消请求时也会回调,保证了 enter() 和 exit() 成对存在;

  • 3、超时回调:AsyncTimeout#timeOut 超时回调中,调用了 Call#cancel() 提前取消请求。Call#cancel() 会调用到 Socket#close(),让阻塞中的 IO 操作抛出 SocketException 异常,以达到提前中断的目的,最终也会走到 callDone() 执行 exit() 退出异步监控。

Call 超时监控示意图

RealCall

class RealCall(
val client: OkHttpClient,
/** The application's original request unadulterated by redirects or auth headers. */
val originalRequest: Request,
val forWebSocket: Boolean
) : Call { // 3、AsyncTimeout 超时监控
private val timeout = object : AsyncTimeout() {
override fun timedOut() {
// 取消请求
cancel()
}
}.apply {
timeout(client.callTimeoutMillis.toLong(), MILLISECONDS)
} // 取消请求
override fun cancel() {
if (canceled) return // Already canceled. canceled = true
exchange?.cancel()
// 最终会调用 Socket#close()
connectionToCancel?.cancel() eventListener.canceled(this)
} // 1、请求开始(由业务层调用)
override fun execute(): Response {
// 1.1 异步超时监控进入
timeout.enter()
// 1.2 执行请求
client.dispatcher.executed(this)
return getResponseWithInterceptorChain()
} // 2、请求结束(由 OkHttp 引擎层调用,包含正常和异常情况)
// 除了 IO 操作在抛出异常后会走到 callDone(),在取消请求时也会走到 callDone()
internal fun <E : IOException?> messageDone(
exchange: Exchange,
requestDone: Boolean, // 请求正常结束
responseDone: Boolean, // 响应正常结束
e: E
): E {
...
if (callDone) {
return callDone(e)
}
return e
} private fun <E : IOException?> callDone(e: E): E {
...
// 检查是否超时
val result = timeoutExit(e)
if (e != null) {
// 请求异常(包含超时异常)
eventListener.callFailed(this, result!!)
} else {
// 请求正常结束
eventListener.callEnd(this)
}
return result
} private fun <E : IOException?> timeoutExit(cause: E): E {
if (timeoutEarlyExit) return cause
// 2.1 异步超时监控退出
if (!timeout.exit()) return cause
// 2.2 包装超时异常
val e = InterruptedIOException("timeout")
if (cause != null) e.initCause(cause)
return e as E
}
}

调用 Socket#close() 会让阻塞中的 IO 操作抛出 SocketException 异常:

Socket.java

// Any thread currently blocked in an I/O operation upon this socket will throw a {@link SocketException}.
public synchronized void close() throws IOException {
synchronized(closeLock) {
if (isClosed())
return;
if (created)
impl.close();
closed = true;
}
}

Exchange 中会捕获 Socket#close() 抛出的 SocketException 异常:

Exchange.kt

private inner class RequestBodySink(
delegate: Sink,
/** The exact number of bytes to be written, or -1L if that is unknown. */
private val contentLength: Long
) : ForwardingSink(delegate) { @Throws(IOException::class)
override fun write(source: Buffer, byteCount: Long) {
...
try {
super.write(source, byteCount)
this.bytesReceived += byteCount
} catch (e: IOException) {
// Socket#close() 会抛出异常,被这里拦截
throw complete(e)
}
} private fun <E : IOException?> complete(e: E): E {
if (completed) return e
completed = true
return bodyComplete(bytesReceived, responseDone = false, requestDone = true, e = e)
}
} fun <E : IOException?> bodyComplete(
bytesRead: Long,
responseDone: Boolean,
requestDone: Boolean,
e: E
): E {
...
// 回调到上面的 RealCall#messageDone
return call.messageDone(this, requestDone, responseDone, e)
}

5. OkHttp 超时检测总结

先说一下 Okhttp 定义的 2 种颗粒度的超时:

  • 第 1 种是在单次 connect、read 或 write 操作上的超时;
  • 第 2 种是在一次完整的 call 请求上的超时,有时候单个操作没有超时,但连接起来的完整 call 却超时。

其实 Socket 支持通过 setSoTimeout API 设置单次操作的超时时间,但这个 API 无法满足需求,比如说 Call 超时是包含多个 IO 操作的复合任务,而且不管是 HTTP/1 并行请求还是 HTTP/2 多路复用,都会存在一个 Socket 连接上同时承载多个请求的情况,无法区分是哪个请求超时。

因此,OkHttp 采用了两种超时监测:

  • 对于 connect 操作,OkHttp 继续使用 Socket 级别的超时,没有问题;
  • 对于 call、read 和 write 的超时,OkHttp 使用一个 Okio 的异步超时机制来监测超时。

参考资料

Android IO 框架 Okio 的实现原理,如何检测超时?的更多相关文章

  1. Android IO 框架 Okio 的实现原理,到底哪里 OK?

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 前言 大家好,我是小彭. 今天,我们来讨论一个 Square 开源的 I/O 框架 Okio,我们最开始接触 ...

  2. Android网络框架-Volley实践 使用Volley打造自己定义ListView

    这篇文章翻译自Ravi Tamada博客中的Android Custom ListView with Image and Text using Volley 终于效果 这个ListView呈现了一些影 ...

  3. Android自动化测试框架UIAutomator原理浅析

    UIAutomator是一个Android自动化测试框架,是谷歌在Android4.1版本发布时推出的一款用Java编写的UI测试框架,它只能用于UI即黑盒方面的测试.所以UIAutomator只能运 ...

  4. Android 内存缓存框架 LruCache 的实现原理,手写试试?

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 前言 大家好,我是小彭. 在之前的文章里,我们聊到了 LRU 缓存淘汰算法,并且分析 Java 标准库中支持 ...

  5. Android网络框架Volley(体验篇)

    Volley是Google I/O 2013推出的网络通信库,在volley推出之前我们一般会选择比较成熟的第三方网络通信库,如: android-async-http retrofit okhttp ...

  6. Android 开发 框架系列 Google的ORM框架 Room

    目录 简介 导入工程 使用流程概况 一个简单的小Demo 深入学习 @Entity使用 自定义表名 tableName  自定义字段名@ColumnInfo 主键 @PrimaryKey 索引 @In ...

  7. Android Butterknife框架

    Android Butterknife框架 注解攻略 时间 2014-02-27 09:28:09  Msquirrel原文  http://www.msquirrel.com/?p=95 一.原理. ...

  8. 2017年Android百大框架排行榜

    框架:提供一定能力的小段程序 >随意转载,标注作者"金诚"即可 >本文已授权微信公众号:鸿洋(hongyangAndroid)原创首发. >本文已经开源到Gith ...

  9. android 优秀框架整理

    程序员界有个神奇的网站,那就是github,这个网站集合了一大批优秀的开源框架,极大地节省了开发者开发的时间,在这里我进行了一下整理,这样可以使我们在使用到时快速的查找到,希望对大家有所帮助! 1. ...

  10. Android网络框架Volley

    Volley是Google I/O 2013推出的网络通信库,在volley推出之前我们一般会选择比较成熟的第三方网络通信库,如: android-async-http retrofit okhttp ...

随机推荐

  1. 【操作说明】全能型H.265播放器如何使用?

    本播放器集成了公司业务的接口,包含了实播,回放,云台控制和回放速度控制,截图和全屏功能可以根据type直接初始化接口地址如果是第三方业务对接,也可以单独配置接口地址 正确使用H.265播放器需要按以下 ...

  2. 嵌入式-C语言基础:字符串结束标识符

    #include<stdio.h> int main() { char cdata[]={'h','e','l','l','o'}; char cdata2[]="hello&q ...

  3. C#使用GDI+同时绘制图像和ROI在picturebox上

    Bitmap bmp; /// <summary> /// 绘制图像 /// </summary> /// <param name="g">Gr ...

  4. 2.3 Goland快捷键

    1 新建 Alt + Insert Alt + Enter 2 移动 Alt + 上下箭头:以函数为单位移动 Ctrl + G : 定位到行 Ctrl + W :可以选择单词继而语句继而行继而函数Ct ...

  5. ArcEngine 序列化AO对象

    ArcEngine中只要是继承了IPersistStream接口的对象均可调用ArcEngine中的类库进行序列化和反序列化.一般我们会序列化成xml格式,作为字符串存储,需要的时候,反序列化为对象. ...

  6. Spring Boot+Mybatis:实现数据库登录注册与两种properties配置参数读取

    〇.参考资料 1.hutool介绍 https://blog.csdn.net/abst122/article/details/124091375 2.Spring Boot+Mybatis实现登录注 ...

  7. Kafka技术专题之「性能调优篇」消息队列服务端出现内存溢出OOM以及相关性能调优实战分析

    内存问题 本篇文章介绍Kafka处理大文件出现内存溢出 java.lang.OutOfMemoryError: Direct buffer memory,主要内容包括基础应用.实用技巧.原理机制等方面 ...

  8. 0停机迁移Nacos?Java字节码技术来帮忙

    摘要:本文介绍如何将Spring Cloud应用从开源Consul无缝迁移至华为云Nacos. 本文分享自华为云社区<0停机迁移Nacos?Java字节码技术来帮忙>,作者:华为云PaaS ...

  9. MySQL存储 pymysql模块

    目录 pymysql模块 基本使用 cursor=pymysql.cursors.DictCursor 获取数据 fetchall 移动光标 scroll 增删改二次确认 commit autocom ...

  10. Scrum敏捷开发方法实践

    前言   作者所在的公司在项目开发的过程中采用着当下互联网公司中流行的小步快跑开发策略,特别借鉴了敏捷开发中的迭代递增思想来指导项目的开发.我们经过对相关敏捷开发方法的调查研究,最终采用了Scrum敏 ...