NC16462 [NOIP2015]跳石头

题目

题目描述

一年一度的“跳石头”比赛又要开始了!

这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 \(N\) 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。

为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 \(M\) 块岩石(不能移走起点和终点的岩石)。

输入描述

输入文件第一行包含三个整数 \(L,N,M\) ,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。

接下来 \(N\) 行,每行一个整数,第 \(i\) 行的整数 \(D_i(0 < D_i < L)\)表示第 \(i\) 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。

输出描述

输出文件只包含一个整数,即最短跳跃距离的最大值。

示例1

输入

25 5 2
2
11
14
17
21

输出

4

说明

将与起点距离为 \(2\) 和 \(14\) 的两个岩石移走后,最短的跳跃距离为 \(4\)(从与起点距离 \(17\) 的岩石跳到距离 \(21\) 的岩石,或者从距离 \(21\) 的岩石跳到终点)。

备注

对于 \(20\%\) 的数据,\(0 ≤ M ≤ N ≤ 10\)。

对于 \(50\%\) 的数据,\(0 ≤ M ≤ N ≤ 100\)。

对于 \(100\%\) 的数据,\(0 ≤ M ≤ N ≤ 50,000,1 ≤ L ≤ 1,000,000,000\) 。

题解

思路

知识点:二分。

这是一道经典的二分答案题,二分答案的特征是:答案的一侧必定可行,答案的另一侧必定不可行,即 可行(答案) 这个离散函数是单调的,且答案在零点处

这道题显然具有二分答案的特征,最小距离小于最大的最小距离时必定可行,大于时必定不行,否则不是最终答案,继续二分逼近。

二分答案题的关键在于 \(check\) 函数,来作为离散函数判断目前答案和最终答案(零点)的关系。这里的 \(check\) 函数表示为检验 \(mid\) 是否可行,每次小于 \(mid\) 的石头会被拿掉,直到距离达标,最后看拿掉多少个,符合就行,超了就不行。

而在下方的二分中,若可行则 \(l = mid + 1\) 即答案可以更大,若不可行则 \(r = mid - 1\) 。当然二分还有别的写法,我喜欢这种,建议顶死一种不要换。

int l = start,r = end;
while(l<=r){
int mid = l+r>>1;
if(check(mid)) l = mid + 1;
else r = mid - 1;
}//最终答案是 l-1 或者 r(不一定,具体看你check的意义,l最后会出现在符合check的最后一个位置+1)

时间复杂度 \(O(N \log L)\)

空间复杂度 \(O(N)\)

代码

#include <bits/stdc++.h>

using namespace std;

int d[50007];
int L, N, M; bool check(int mid) {
int pos = 0, cnt = 0;
for (int i = 1;i <= N;i++) {
if (d[i] - pos < mid) cnt++;
else pos = d[i];
}
if (cnt > M) return false;
else return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> L >> N >> M;
for (int i = 1;i <= N;i++) cin >> d[i];
d[N + 1] = L;
int l = 1, r = L;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) l = mid + 1;
else r = mid - 1;
}
cout << r << '\n';
return 0;
}

NC16462 [NOIP2015]跳石头的更多相关文章

  1. NOIP2015跳石头[二分答案]

    题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选 择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N 块岩石( ...

  2. NOIP2015 跳石头

    一年一度的“跳石头”比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N块岩石(不含起点和终点的岩石). ...

  3. [二分答案][NOIP2015]跳石头

    跳石头 题目描述 一年一度的“跳石头”比赛又要开始了!这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N 块岩石(不含起 ...

  4. NOIP2015跳石头

    题目描述 Description 一年一度的“跳石头”比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有N ...

  5. luogu2678 [NOIp2015]跳石头 (二分答案+贪心)

    先二分出一个x,我们要算使最近的跳跃距离>=x的最少移除数量是否<=M就可以了 然后就别dp了...贪心就完事了...我肯定能不移就不移比较好... #include<bits/st ...

  6. bzoj1650 / P2855 [USACO06DEC]河跳房子River Hopscotch / P2678 (noip2015)跳石头

    P2855 [USACO06DEC]河跳房子River Hopscotch 二分+贪心 每次二分最小长度,蓝后检查需要去掉的石子数是否超过限制. #include<iostream> #i ...

  7. UOJ #148. 【NOIP2015】跳石头 二分

    #148. [NOIP2015]跳石头 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/148 Descripti ...

  8. 洛谷 P2678 & [NOIP2015提高组] 跳石头

    题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...

  9. 【二分查找】 跳石头NOIP2015提高组 D2T1

    [二分查找]跳石头NOIP2015提高组 D2T1 >>>>题目 [题目描述] 一年一度的“跳石头”比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石 ...

随机推荐

  1. 2021.08.03 P1197 星球大战(并查集)

    2021.08.03 P1197 星球大战(并查集) [P1197 JSOI2008]星球大战 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.可以离线处理.把在线变为离 ...

  2. Envoy熔断限流实践(一)基于Rainbond插件实现熔断

    Envoy 可以作为 Sevice Mesh 微服务框架中的代理实现方案,Rainbond 内置的微服务框架同样基于 Envoy 实现.本文所描述的熔断实践基于 Rainbond 特有的插件机制实现. ...

  3. input输入框自动填充的问题

    火狐浏览器打开页面,input可以自动填充历史输入值,现在想无论input类型是type='text'还是'password'都禁止自动填充,因为我写的页面在input='text'时先检查是否有输入 ...

  4. python学习-Day18

    目录 今日内容详细 模块 循环导入问题 判断文件类型 py文件可以被分为两种类型 内置变量 __ name __ 模块的查找顺序 验证先从内存空间中查找 验证再从内置模块中查找 验证sys.path ...

  5. ABP应用开发(Step by Step)-上篇

    本文主要通过逐步构建一个CRUD示例程序来介绍 ABP 框架的基础知识.它涉及到应用开发的多个方面.在本章结束时,您将了解ABP 框架的基本开发方式.建议入门人员学习,老手不要浪费您宝贵时间.  创建 ...

  6. [AcWing 777] 字符串乘方

    点击查看代码 #include<iostream> using namespace std; string str; int main() { while (cin >> st ...

  7. [AcWing 768] 忽略大小写比较字符串大小

    点击查看代码 #include<iostream> using namespace std; string a, b; int main() { getline(cin, a); getl ...

  8. 如何改变函数内部 this 的指向

    一.函数内 this 的指向 1. this 的指向是当调用函数时确定的,调用的方式不同,this 的指向也就不同. 1.1 this 一般是指向调用者. 函数类型 this 的指向 普通函数 Win ...

  9. py文件加密打包成exe文件

    python的py.pyc.pyo.pyd文件区别 py是源文件: pyc是源文件编译后的文件: pyo是源文件优化编译后的文件: pyd是其他语言写的python库: 为什么选用Cpython .p ...

  10. ucore lab6 调度管理机制 学习笔记

    这节虽叫调度管理机制,整篇下来主要就讲了几个调度算法.兴许是考虑到LAB5难,LAB6就仁慈了一把,难度大跳水.平常讲两节原理做一个实验,这次就上了一节原理.权当大战后的小憩吧. schedule函数 ...