NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:

  • 一个强大的N维数组对象 ndarray

  • 广播功能函数

  • 整合 C/C++/Fortran 代码的工具

  • 线性代数、傅里叶变换、随机数生成等功能

安装:

pip install --user numpy scipy matplotlib

清华镜像:

pip install numpy scipy matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

测试:

from numpy import *
eye(4) #生成对角矩阵 ——》array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

创建一个 ndarray 只需调用 NumPy 的 array 函数即可:

numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

参数说明:

名称 描述
object 数组或嵌套的数列
dtype 数组元素的数据类型,可选
copy 对象是否需要复制,可选
order 创建数组的样式,C为行方向,F为列方向,A为任意方向(默认)
subok 默认返回一个与基类类型一致的数组
ndmin 指定生成数组的最小维度

实例1:

import numpy as np
a = np.array([1,2,3])
print (a)
——》[1 2 3]

实例2:

# 多于一个维度
import numpy as np
a = np.array([[1, 2], [3, 4]]) print (a)
——》[[1 2]
[3 4]]

实例3:

# 最小维度
import numpy as np
a = np.array([1, 2, 3, 4, 5], ndmin = 2)
print (a)
——》[[1 2 3 4 5]]

实例4:

# dtype 参数
import numpy as np
a = np.array([1, 2, 3], dtype = complex)
print (a)
——>[1.+0.j 2.+0.j 3.+0.j]

ndarray 对象由计算机内存的连续一维部分组成,并结合索引模式,将每个元素映射到内存块中的一个位置。内存块以行顺序(C样式)或列顺序(FORTRAN或MatLab风格,即前述的F样式)来保存元素。

数据类型

名称 描述
bool_ 布尔型数据类型(True 或者 False)
int_ 默认的整数类型(类似于 C 语言中的 long,int32 或 int64)
intc 与 C 的 int 类型一样,一般是 int32 或 int 64
intp 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)
int8 字节(-128 to 127)
int16 整数(-32768 to 32767)
int32 整数(-2147483648 to 2147483647)
int64 整数(-9223372036854775808 to 9223372036854775807)
uint8 无符号整数(0 to 255)
uint16 无符号整数(0 to 65535)
uint32 无符号整数(0 to 4294967295)
uint64 无符号整数(0 to 18446744073709551615)
float_ float64 类型的简写
float16 半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位
float32 单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位
float64 双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位
complex_ complex128 类型的简写,即 128 位复数
complex64 复数,表示双 32 位浮点数(实数部分和虚数部分)
complex128 复数,表示双 64 位浮点数(实数部分和虚数部分)

numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_,np.int32,np.float32,等等。

数据类型对象 (dtype)

数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面::

  • 数据的类型(整数,浮点数或者 Python 对象)

  • 数据的大小(例如, 整数使用多少个字节存储)

  • 数据的字节顺序(小端法或大端法)

  • 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分

  • 如果数据类型是子数组,那么它的形状和数据类型是什么。

字节顺序是通过对数据类型预先设定 <> 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。

dtype 对象是使用以下语法构造的:

numpy.dtype(object, align, copy)
  • object - 要转换为的数据类型对象

  • align - 如果为 true,填充字段使其类似 C 的结构体。

  • copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用

实例1:

import numpy as np
# 使用标量类型
dt = np.dtype(np.int32)
print(dt)
——》int32

实例2:

import numpy as np
# int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替
dt = np.dtype('i4')
print(dt)
——》int32

实例3:

import numpy as np
# 字节顺序标注
dt = np.dtype('<i4')
print(dt)
——》int32

每个内建类型都有一个唯一定义它的字符代码,如下:

字符 对应类型
b 布尔型
i (有符号) 整型
u 无符号整型 integer
f 浮点型
c 复数浮点型
m timedelta(时间间隔)
M datetime(日期时间)
O (Python) 对象
S, a (byte-)字符串
U Unicode
V 原始数据 (void)

NumPy 数组属性

NumPy 的数组中比较重要 ndarray 对象属性有:

属性 说明
ndarray.ndim 秩,即轴的数量或维度的数量
ndarray.shape 数组的维度,对于矩阵,n 行 m 列
ndarray.size 数组元素的总个数,相当于 .shape 中 n*m 的值
ndarray.dtype ndarray 对象的元素类型
ndarray.itemsize ndarray 对象中每个元素的大小,以字节为单位
ndarray.flags ndarray 对象的内存信息
ndarray.real ndarray元素的实部
ndarray.imag ndarray 元素的虚部
ndarray.data 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

numpy学习笔记 01的更多相关文章

  1. Numpy学习笔记(上篇)

    目录 Numpy学习笔记(上篇) 一.Jupyter Notebook的基本使用 二.Jpuyter Notebook的魔法命令 1.%run 2.%timeit & %%timeit 3.% ...

  2. 软件测试之loadrunner学习笔记-01事务

    loadrunner学习笔记-01事务<转载至网络> 事务又称为Transaction,事务是一个点为了衡量某个action的性能,需要在开始和结束位置插入一个范围,定义这样一个事务. 作 ...

  3. NumPy学习笔记 三 股票价格

    NumPy学习笔记 三 股票价格 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.&l ...

  4. NumPy学习笔记 二

    NumPy学习笔记 二 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分 ...

  5. NumPy学习笔记 一

    NumPy学习笔记 一 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分 ...

  6. numpy 学习笔记

    numpy 学习笔记 导入 numpy 包 import numpy as np 声明 ndarray 的几种方法 方法一,从list中创建 l = [[1,2,3], [4,5,6], [7,8,9 ...

  7. Numpy学习笔记(下篇)

    目录 Numpy学习笔记(下篇) 一.Numpy数组的合并与分割操作 1.合并操作 2.分割操作 二.Numpy中的矩阵运算 1.Universal Function 2.矩阵运算 3.向量和矩阵运算 ...

  8. Python数据分析:Numpy学习笔记

    Numpy学习笔记 ndarray多维数组 创建 import numpy as np np.array([1,2,3,4]) np.array([1,2,3,4,],[5,6,7,8]) np.ze ...

  9. C++ GUI Qt4学习笔记01

    C++ GUI Qt4学习笔记01   qtc++signalmakefile文档平台 这一章介绍了如何把基本的C++只是与Qt所提供的功能组合起来创建一些简单的图形用户界面应用程序. 引入两个重要概 ...

随机推荐

  1. FSB—QPI—DMI总线的发展

    intel CPU有的是前端总线(FSB),有的是QPI总线,有的又是DMI总线 FSB总线(由于cpu的发展,fsb总线制约了cpu的发展,所以该总线已经渐渐淡出历史舞台) FSB即Front Si ...

  2. line-height: 1; line-height: 100%;是什么意思

    先简单看个例子: css 页面: 应该猜测出来了: line-height: 1; = line-height: 100%; = font-size: 50px; 把哪一个放到最后都是一样的.我理解的 ...

  3. 《手把手教你》系列基础篇(八十八)-java+ selenium自动化测试-框架设计基础-Log4j 2实现日志输出-下篇(详解教程)

    1.简介 上一篇宏哥讲解和分享了如何在控制台输出日志,但是你还需要复制粘贴才能发给相关人员,而且由于界面大小限制,你只能获取当前的日志,因此最好还是将日志适时地记录在文件中直接打包发给相关人员即可.因 ...

  4. 使用Lua 脚本实现redis 分布式锁,报错:ERR Error running script (call to f_8ea1e266485534d17ddba5af05c1b61273c30467): @user_script:10: @user_script: 10: Lua redis() command arguments must be strings or integers .

    在使用SpringBoot开发时,使用RedisTemplate执行 redisTemplate.execute(lockScript, redisList); 发现报错: ERR Error run ...

  5. css 动画 (2)

    1. html 结构 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  6. netty系列之:netty中的核心MessageToMessage编码器

    目录 简介 框架简介 MessageToMessageEncoder MessageToMessageDecoder MessageToMessageCodec 总结 简介 在netty中我们需要传递 ...

  7. 新华三Gen10服务器ilo5中刷新bios固件

    新华三Gen10服务器ilo5中刷新bios固件. 当前bios1.42 已经是最新了. 固件下载后解压缩. 选择刷新固件. 点击浏览.flash文件. 点击flash 点击ok确认 开始上传 刷新进 ...

  8. Promise与async/await与Generator

    Promise是什么: Promise是异步微任务(process.nextTick.Promise.then() catch() finally()等),用于解决异步多层嵌套回调的问题(回调地狱-- ...

  9. 关于position的relative和absolute分别是相对于谁进行定位的

    position:absolute; 他的意思是绝对定位,他是参照浏览器的左上角,配合TOP.RIGHT.BOTTOM.LEFT(下面简称TRBL)进行定位,在没有设定TRBL,默认依据父级的做标原始 ...

  10. DirectX11--CPU与GPU计时器

    前言 GAMES104的王希说过: 游戏引擎的世界里,它的核心是靠Tick()函数把这个世界驱动起来. 本来单是一个CPU的计时器是不至于为其写一篇博客的,但把GPU计时器功能加上后就不一样了.在这一 ...