感觉网上很多写的都不是很清楚啊 awa。


CRT

就是解这个方程 \(\begin{cases}x\equiv r_1 \pmod {m_1}\\ x\equiv r_2 \pmod {m_2} \\\dots\\x_n \equiv r_n \pmod {m_n}\end{cases}\),其中 \(m_1\sim m_n\) 两两互质,求 \(x\) 最小解。

令 \(M = \prod\limits_{i = 1}^n m_i\),\(t_i\) 为 \(\dfrac{M}{m_i}\) 在模 \(m_i\) 意义下的乘法逆元。。则有 \(ans_0 = \sum\limits_{i = 1}^n \dfrac{M}{m_i} t_i r_i\),通解形式为 \(ans = ans_0 + kM\),特别的其中小于 \(M\) 的非负整数解只有一个,那就是 \(ans = ans_0\bmod M\),这也是最小解。

证明:先证明正确性,再证明唯一性。

正确性:(感觉很显然 qwq)对于任意 \(1\le k \le n\) 有 \(\sum\limits_{i = 1}^n \dfrac{M}{m_i}t_i r_i \equiv r_k\pmod {m_k}\)。对于 \(i\not= k\) 时,\(\dfrac{M}{m_i} \equiv 0\pmod {m_k}\)(显然),这个时候不会对 \(\sum\limits_{i = 1}^n \dfrac{M}{m_i} t_i r_i\) 这个式子做出任何贡献。当 \(i = k\) 时,由于 \(t_i\) 是 \(\dfrac{M}{m_i}\) 在堆 \(m_i\) 取余意义下的逆元,因此 \(\dfrac{M}{m_i}t_i\equiv 1\pmod {m_i}\)。因为这里 \(i = k\),所以应该是 \(\dfrac{M}{m_k}t_k\equiv 1\pmod{m_k}\),两边同乘一个 \(r_k\) 就得到了 \(\dfrac{M}{m_k}t_k r_k\equiv r_k\pmod {m_k}\)。因此就有 \(\sum\limits_{i = 1}^n \dfrac{M}{m_i}t_i r_i \equiv r_k\pmod {m_k}\)。

唯一性。这里唯一性是指小于 \(M\) 的解唯一。假设我们已经找到了一个解 \(x\),它的通解形式显然是 \(x + kM\),可以用反证法证明。那么只要 \(k \not= 1\) 则 \(x + kM> M\)。


exCRT

本质是同余方程组的合并。就是 CRT 解决的问题去掉了一个互质。

比如说现在我们有两个方程组,\(\begin{cases}x\equiv r_1 \pmod {m_1} \\ x\equiv r_2\pmod {m_2}\end{cases}\),令 \(\begin{cases}x = k_1m_1 + r_1 \\ x = k_2m_2 + r_2\end{cases}\),则有 \(k_1m_1 + r_1 = k_2m_2 + r_2\)。移项得 \(k_1m_1 + k_2(-m_2) = r_2 - r_1\)。运用飞天意面神教的咒语exgcd 的知识我们知道当 \(\gcd(m_1, m_2) \not | (r_2 - r_1)\) 时方程无解,否则可以用 exgcd 的知识求出来一组解 \(k_1',k_2'\) 满足 \(k_1'm_1 + k_2'm_2 = \gcd(m_1, m_2)\)。一个合法的解就是 \((\dfrac{k_1'(r_2 - r_1)}{\gcd(m_1, m_2)} + o\dfrac{m_2}{\gcd(m_1, m_2)})m_1+(\dfrac{-k_2'(r_2 - r_1)}{\gcd(m_1, m_2)} - o\dfrac{m_1}{\gcd(m_1, m_2)})m_2 = r_2 - r_1\)。\(o\) 是整数。

即 \(k_1 = (\dfrac{k_1'(r_2 - r_1)}{\gcd(m_1, m_2)} + o\dfrac{m_2}{\gcd(m_1, m_2)})\),代入进 \(x\) 得 \(x = (\dfrac{k_1'(r_2 - r_1)}{\gcd(m_1, m_2)} + o\dfrac{m_2}{\gcd(m_1, m_2)})m_1 + r_1\),也就是 \(x = \dfrac{k_1'm_1(r2-r1)}{\gcd(m_1, m_2)} + o\dfrac{m_1m_2}{\gcd(m_1, m_2)} + r_1\)。

我们觉得 \(o\dfrac{m_1m_2}{\gcd(m_1, m_2)}\) 很丑,因此我们用飞天意面神教的咒语同余的方法两边同时对 \(\dfrac{m_1m_2}{\gcd(m_1, m_2)}\)取余消掉这项避免掉 \(o\) 的求解,同时这样做也能让我们完成合并两个同余式的使命,就能得到 \(x\equiv \dfrac{k_1'm_1(r_2- r_1)}{\gcd(m_1, m_2)} + r_1\pmod {\dfrac{m_1m_2}{\gcd(m_1, m_2)}}\)。


代码里面有个小细节,\(r_2 - r_1\) 是负数怎么办?

我们可以 \([(r_2 - r_1) \bmod m_2 + m_2]\bmod m_2\) 一下。

由于我也没有好的方法说明,如果大家有好的方法欢迎用邮箱发给小 SX 哒(我的 QQ 邮箱是 2392303708@qq.com)。就是令 \(M\) 为 \(\operatorname{lcm}(m_1, m_2, \dots, m_k - 1)\),我们已经知道了前 \(k - 1\) 个方程的通解 \(x\),现在我们要求一个 \(x'\) 满足 \(x'\equiv r_k \pmod {m_k}\),\(x'\) 可以表示成 \(x + tM\) 的形式,也就是 \(tM + x\equiv r_k\pmod{m_k}\),移项得 \(tM\equiv r_k - x\pmod{m_k}\)。容易看出来 \(x\) 其实对应着我们上面的 \(r_1\),\(r_k\) 对应着我们上面的 \(r_2\)。

这是一个简单的线性同余方程,我们可以用扩欧解掉。

这种方式更加简单,可拓展性强,你可以用类似的方法秒杀 https://www.luogu.com.cn/problem/P4774

但缺点在于貌似比较迷。。。?毕竟没有上面的推导雀食布吉岛为什么模数就直接取它们的 \(\operatorname{lcm}\) 对八┓( ´∀` )┏


屠龙勇士这题貌似没啥可讲的,毕竟推出来式子感觉比较显然。。。?

无脑套个平衡树就挺无聊的就,,,但是自己到现在还不能默写平衡树,,,wtf,,,

明天去背 fhq 板子 qwq!一定要背下来惹。。。

虽然正常考试一般不考这玩意但是背下来貌似能省很多动脑的内容。。。套板子万岁!┓( ´∀` )┏

CRT 与 exCRT的更多相关文章

  1. P1495 CRT,P4777 EXCRT

    updata on 2020.4.11 修正了 excrt 的一处笔误 CRT 求解方程: \[\begin{cases} x \equiv a_1 \pmod {m_1}\\ x \equiv a_ ...

  2. CRT和EXCRT学习笔记

    蒟蒻maomao终于学会\(CRT\)啦!发一篇博客纪念一下(还有防止忘掉) \(CRT\)要解决的是这样一个问题: \[x≡a_1​(mod m_1​)\] \[x≡a_2​(mod m_2​)\] ...

  3. CRT和EXCRT简单学习笔记

    中国剩余定理CRT 中国剩余定理是要求我们解决这样的一类问题: \[\begin{cases}x\equiv a_1\pmod {b_1} \\x\equiv a_2 \pmod{b_2}\\...\ ...

  4. 浅析中国剩余定理(从CRT到EXCRT))

    前置知识 1. a%b=d,c%b=e, 则(a+c)%b=(d+e)%b(正确性在此不加证明) 2. a%b=1,则(d\(\times\)a)%b=d%b(正确性在此不加证明) 下面先看一道题(改 ...

  5. Algorithm: CRT、EX-CRT & Lucas、Ex-Lucas

    中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. \[ \begin{aligne ...

  6. 关于一次同余方程的一类解法(exgcd,CRT,exCRT)

    1.解同余方程: 同余方程可以转化为不定方程,其实就是,这样的问题一般用拓展欧几里德算法求解. LL exgcd(LL a,LL b,LL &x,LL &y){ if(!b){ x=; ...

  7. 「算法笔记」CRT 与 exCRT

    一.扩展欧几里得 求解方程 \(ax+by=\gcd(a,b)\). int exgcd(int a,int b,int &x,int &y){ if(!b) return x=1,y ...

  8. 中国剩余定理(CRT)及其扩展(EXCRT)详解

    问题背景   孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第 ...

  9. 中国剩余定理(CRT)

    只看懂了CRT,EXCRT待补.... 心得:记不得这是第几次翻CRT了,每次都有迷迷糊糊的.. 中国剩余定理用来求解类似这样的方程组: 求解的过程中用到了同余方程. x=a1( mod x1) x= ...

  10. $NOIp2018$劝退记

    鸽子博主好久没更博了,这一更可能以后都更不了了啊 \(Day~~1\) 考试爆零,已经无所畏惧了. 当作攒rp吧...qwq 晚上写了写数学总结,蒯了一堆人的博客资料,然后就学会了\(CRT\),\( ...

随机推荐

  1. 关于linux更改root用户下面的鼠标样式

    前言 这几天一直研究关于 lightmd 显示管理器(也就是刚进入系统的用户登录界面)的主题配置问题,我发现鼠标样式和登录个人用户的鼠标样式不一样(之前我也发现了,懒得捣鼓)今天抽出时间研究了一下,这 ...

  2. 【大数据课程】高途课程实践-Day01:Python编写Map Reduce函数实现各商品销售量展示(类似wordcount)

    〇.概述 1.工具 http://www.dooccn.com/python3/ 在线运行Python代码 2.步骤 (1)⽣成代码测试数据 (2)编写Mapper逻辑 (3)编写Reducer逻辑 ...

  3. 【每日一题】【直接循环&二分查找】2022年2月10日-NC32 求平方根

    描述实现函数 int sqrt(int x).计算并返回 x 的平方根(向下取整) 方法1:直接循环 import java.util.*; public class Solution { /** * ...

  4. 【离线数仓CDH版本】即席查询工具(Presto、Druid、Kylin)、CDH数仓、Impala查询

    1.即席查询 一.Presto 大数据量.秒级.多数据源的查询引擎[支持各种数据源work的内存级查询] 由coordinator和多个work构成,work对应不同数据源Catalog 特点:基于内 ...

  5. mac连接mysql出现Access denied for user ‘root‘@‘localhost‘

    处理方法:1.关闭mysql的服务,点击最左上的苹果图标在系统偏好设置中,找到mysql,点击,stop 确认关闭后进入终端 输入(cd /usr/local/mysql/bin/)回车 输入(sud ...

  6. jQuery基本使用

    目录 一:jQuery查找标签 1.基本选择器 二:分组与嵌套 三:组合选择器 四:jQuery基本筛选器 五:属性选择器 1.属性标签 六:JQuery表单筛选器 1.type属性 2.表单对象属性 ...

  7. python函数及算法

    算法二分法 二分算法图 什么是算法? ​ 算法是高效解决问题的办法. 需求:有一个按照从小到大顺序排列的数字列表,查找某一个数字 # 定义一个无序的列表 nums = [3,4,5,67,8,9,12 ...

  8. prometheus-监控docker服务器

    1. prometheus-监控docker服务器 prometheus-监控docker服务器 cAdvisor(Container Advisor):用于收集正在运行的容器资源使用和性能信息. 项 ...

  9. day13-功能实现12

    家居网购项目实现012 以下皆为部分代码,详见 https://github.com/liyuelian/furniture_mall.git 29.功能27-Ajax检验注册名 29.1需求分析/图 ...

  10. 迁移学习(DANN)《Domain-Adversarial Training of Neural Networks》

    论文信息 论文标题:Domain-Adversarial Training of Neural Networks论文作者:Yaroslav Ganin, Evgeniya Ustinova, Hana ...