leetcode5 最长回文字符串 动态规划 Manacher法
dp
注意没有声明S不空,处理一下
o(n^2)
class Solution {
public:
string longestPalindrome(string s) {
if (s.empty())
return "";
int len=s.length();
int dp[len][len];
for(int i=0;i<len;i++)
for(int k=0;k<len;k++)
dp[i][k]=0;
int start=0,end=0;
for (int i=0;i<len;i++)
{
dp[i][i]=1;
if((i<len-1)&&(s[i]==s[i+1])){
dp[i][i+1]=1;
start=i;
end=i+1;
}
}
for(int dis=2;dis<len;dis++) // i-> I-1,I+1,所以处理不了两个连续
{
for(int i=0;(i+dis)<len;i++)
if((dp[i+1][i+dis-1]==1)&&(s[i]==s[i+dis]))
{
dp[i][i+dis]=1;
if((dis)>(end-start)){
start=i;
end=i+dis;
}
}
}
return s.substr(start,end-start+1);
}
};
遇到的问题:
== 写成了= 。。。。。
然后dp数组没有先mem为0...
然后是Manacher法
参考https://www.cnblogs.com/mini-coconut/p/9074315.html
首先,Manacher算法提供了一种巧妙地办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,
具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现,一般情况下可以用#号。下面举一个例子:
(1)Len数组简介与性质
Manacher算法用一个辅助数组Len[i]表示以字符T[i]为中心的最长回文字串的最右字符到T[i]的长度,比如以T[i]为中心的最长回文字串是T[l,r],那么Len[i]=r-i+1。
对于上面的例子,可以得出Len[i]数组为:
Len数组有一个性质,那就是Len[i]-1就是该回文子串在原字符串S中的长度,
证明,
首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那么对于以T[i]为中心的最长回文字串,其长度就为2*Len[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有Len[i]个分隔符,剩下Len[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为Len[i]-1。
有了这个性质,那么原问题就转化为求所有的Len[i]。下面介绍如何在线性时间复杂度内求出所有的Len。
(2)Len数组的计算
首先从左往右依次计算Len[i],当计算Len[i]时,Len[j](0<=j<i)已经计算完毕。
设P为之前计算中最长回文子串的右端点,并且设取得这个最大值的位置为po,分两种情况:
第一种情况:i<=P
那么找到i相对于po的对称位置,设为j,那么如果Len[j]<P-i,如下图:
那么说明以j为中心的回文串一定在以po为中心的回文串的内部,且j和i关于位置po对称,
由回文串的定义可知,一个回文串反过来还是一个回文串,
所以以i为中心的回文串的长度至少和以j为中心的回文串一样(因为j,i及其附近点关于P对称,j所在回文串对称过去),即Len[i]>=Len[j]。
因为Len[j]<P-i,所以说i+Len[j]<P。由对称性可知Len[i]=Len[j]。
如果Len[j]>=P-i,由对称性,说明以i为中心的回文串可能会延伸到P之外,而大于P的部分我们还没有进行匹配,所以要从P+1位置开始一个一个进行匹配,直到发生失配,从而更新P和对应的po以及Len[i]。
第二种情况: i>P
如果i比P还要大,说明对于中点为i的回文串还一点都没有匹配,这个时候,就只能老老实实地一个一个匹配了,匹配完成后要更新P的位置和对应的po以及Len[i]。
2.时间复杂度分析
Manacher算法的时间复杂度分析和Z算法类似,因为算法只有遇到还没有匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,所以对于T字符串中的每一个位置,只进行一次匹配,所以Manacher算法的总体时间复杂度为O(n),其中n为T字符串的长度,由于T的长度事实上是S的两倍,所以时间复杂度依然是线性的。
下面是算法的实现,注意,为了避免更新P的时候导致越界,我们在字符串T的前增加一个特殊字符,比如说‘$’,所以算法中字符串是从1开始的。、
leetcode5 最长回文字符串 动态规划 Manacher法的更多相关文章
- leetcode-5 最长回文子串(动态规划)
题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...
- Manacher算法:求解最长回文字符串,时间复杂度为O(N)
原文转载自:http://blog.csdn.net/yzl_rex/article/details/7908259 回文串定义:"回文串"是一个正读和反读都一样的字符串,比如&q ...
- 最长回文字符串(manacher算法)
偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid. 题目描述: 回文串就是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串. ...
- 【转载】最长回文字符串(manacher算法)
原文转载自:http://blog.csdn.net/lsjseu/article/details/9990539 偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid ...
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
- 最长回文子串的Manacher算法
对于一个比较长的字符串,O(n^2)的时间复杂度是难以接受的.Can we do better? 先来看看解法2存在的缺陷. 1) 由于回文串长度的奇偶性造成了不同性质的对称轴位置,解法2要对两种情况 ...
- JavaScript之最长回文字符串
JavaScript经典面试题算法:最长回文字符串 下面的解题方法是通过中心扩散法的方式实现的,具体代码和注释如下(时间复杂度: O(n^2),空间复杂度:O(1)) // str字符串functio ...
- 字符串的最长回文串:Manacher’s Algorithm
题目链接:Longest Palindromic Substring 1. 问题描述 Given a string S, find the longest palindromic substring ...
- 计算字符串的最长回文子串 :Manacher算法介绍
转自: http://www.open-open.com/lib/view/open1419150233417.html Manacher算法 在介绍算法之前,首先介绍一下什么是回文串,所谓回文串,简 ...
随机推荐
- rename命令和批量重命名
本文为转载文章,转发自 https://blog.csdn.net/GGxiaobai/article/details/53507454 早期版本的rename是C语言版本,如今新的Ubuntu中采用 ...
- 当spring 对象@Autowired 注入失败或者创建对象Bean失败、No qualifying bean/Error creating bean 的失败情形分析和解决方案
错误信息 今天开发的过程中突然出现如下错误: Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException: N ...
- Eclipse中给jar包导入JavaDoc的方法
原文转载自:http://blog.csdn.net/mr_von/article/details/7740138 在使用Java语言开发的过程中,开发人员经常需要用到一些开源的工具包.在使用别人的j ...
- UVM基础总结——基于《UVM实战》示例
一.前言 工作一直在做SoC验证,更关注模块间的连接性和匹配性,所以相比于擅长随机约束激励的UVM来说,定向测试的概念更容易debug.当然前提是IP已经被充分验证.因此觉得接触UVM的机会较少.到现 ...
- Linux下载并安装JDK1.8
https://blog.csdn.net/Future_LL/article/details/84667634
- [Usaco2012 Dec]Running Away From the Barn
题目描述 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于l的点有多少个. 输入格式 Line 1: 2 integers, N and L (1 <= N <= 200,0 ...
- 中文电子病历命名实体识别(CNER)研究进展
中文电子病历命名实体识别(CNER)研究进展 中文电子病历命名实体识别(Chinese Clinical Named Entity Recognition, Chinese-CNER)任务目标是从给定 ...
- ubuntu qt5.8 编译qtwebkit
qtwebkit- 下载地址:http://download.qt.io/community_releases/5.8/5.8.0-final/ 问题一 出现如下错误 解决方法 sudo apt- ...
- based on Greenlets (via Eventlet and Gevent) fork 孙子worker 比较 gevent不是异步 协程原理 占位符 placeholder (Future, Promise, Deferred) 循环引擎 greenlet 没有显式调度的微线程,换言之 协程
gevent GitHub - gevent/gevent: Coroutine-based concurrency library for Python https://github.com/gev ...
- qbxt 学习笔记 10.2 晚
目录 整除性 素数 组合数 Lucas 定理: 整除性 直接搬 ppt 特殊的整除性质 素数 素数定理: 线性筛: 原理:一个合数只由其最大素因子筛去. 代码: 组合数 Lucas 定理: \[\bi ...