dp

注意没有声明S不空,处理一下

o(n^2)

class Solution {
public:
string longestPalindrome(string s) {
if (s.empty())
return "";
int len=s.length();
int dp[len][len];
for(int i=0;i<len;i++)
for(int k=0;k<len;k++)
dp[i][k]=0;
int start=0,end=0;
for (int i=0;i<len;i++)
{
dp[i][i]=1;
if((i<len-1)&&(s[i]==s[i+1])){
dp[i][i+1]=1;
start=i;
end=i+1;
}
}
for(int dis=2;dis<len;dis++) // i-> I-1,I+1,所以处理不了两个连续
{
for(int i=0;(i+dis)<len;i++)
if((dp[i+1][i+dis-1]==1)&&(s[i]==s[i+dis]))
{
dp[i][i+dis]=1;
if((dis)>(end-start)){
start=i;
end=i+dis;
}
}
}
return s.substr(start,end-start+1);
}
};

遇到的问题:

== 写成了= 。。。。。

然后dp数组没有先mem为0...

然后是Manacher法

参考https://www.cnblogs.com/mini-coconut/p/9074315.html

首先,Manacher算法提供了一种巧妙地办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,

具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现,一般情况下可以用#号。下面举一个例子:

(1)Len数组简介与性质

Manacher算法用一个辅助数组Len[i]表示以字符T[i]为中心的最长回文字串的最右字符到T[i]的长度,比如以T[i]为中心的最长回文字串是T[l,r],那么Len[i]=r-i+1。

对于上面的例子,可以得出Len[i]数组为:

Len数组有一个性质,那就是Len[i]-1就是该回文子串在原字符串S中的长度,

证明,

首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那么对于以T[i]为中心的最长回文字串,其长度就为2*Len[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有Len[i]个分隔符,剩下Len[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为Len[i]-1。

有了这个性质,那么原问题就转化为求所有的Len[i]。下面介绍如何在线性时间复杂度内求出所有的Len。

(2)Len数组的计算

首先从左往右依次计算Len[i],当计算Len[i]时,Len[j](0<=j<i)已经计算完毕。

设P为之前计算中最长回文子串的右端点,并且设取得这个最大值的位置为po,分两种情况:

第一种情况:i<=P

那么找到i相对于po的对称位置,设为j,那么如果Len[j]<P-i,如下图:

那么说明以j为中心的回文串一定在以po为中心的回文串的内部,且j和i关于位置po对称,

由回文串的定义可知,一个回文串反过来还是一个回文串,

所以以i为中心的回文串的长度至少和以j为中心的回文串一样(因为j,i及其附近点关于P对称,j所在回文串对称过去),即Len[i]>=Len[j]。

因为Len[j]<P-i,所以说i+Len[j]<P。由对称性可知Len[i]=Len[j]。

如果Len[j]>=P-i,由对称性,说明以i为中心的回文串可能会延伸到P之外,而大于P的部分我们还没有进行匹配,所以要从P+1位置开始一个一个进行匹配,直到发生失配,从而更新P和对应的po以及Len[i]。

第二种情况: i>P

如果i比P还要大,说明对于中点为i的回文串还一点都没有匹配,这个时候,就只能老老实实地一个一个匹配了,匹配完成后要更新P的位置和对应的po以及Len[i]。

2.时间复杂度分析

Manacher算法的时间复杂度分析和Z算法类似,因为算法只有遇到还没有匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,所以对于T字符串中的每一个位置,只进行一次匹配,所以Manacher算法的总体时间复杂度为O(n),其中n为T字符串的长度,由于T的长度事实上是S的两倍,所以时间复杂度依然是线性的。

下面是算法的实现,注意,为了避免更新P的时候导致越界,我们在字符串T的前增加一个特殊字符,比如说‘$’,所以算法中字符串是从1开始的。、

#include<iostream>
#include<limits.h>
#include<vector>
using namespace std;
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
class Solution {
public:
    string longestPalindrome(string s)
 {
    string manaStr = "$#";
    for (int i=0;i<s.size();i++) //首先构造出新的字符串
    {
      manaStr += s[i];
      manaStr += '#';
    }
    vector<int> rd(manaStr.size(), 0);//用一个辅助数组来记录最大的回文串长度,注意这里记录的是新串的长度,原串的长度要减去1
    int pos = 0, mx = 0;  //pos 当前最长回文串中点。mx当前最长回文串右端点
    int start = 0, maxLen = 0;  //起点,长度。  rd[i]即为上述len[i]
    for (int i = 1; i < manaStr.size(); i++) 
    {
      rd[i] = i < mx ? min(rd[2 * pos - i], mx - i) : 1;//越界 rd[2*pos-i 即为len[j]
      while (i+rd[i]<manaStr.size() && i-rd[i]>0 && manaStr[i + rd[i]] == manaStr[i - rd[i]])//这里要注意数组越界的判断
          rd[i]++;
      if (i + rd[i] > mx) //如果新计算的最右侧端点大于mx,则更新pos和mx
      {
        pos = i;
        mx = i + rd[i];
      }
      if (rd[i] - 1 > maxLen)
      {
        start = (i - rd[i]) / 2;
        maxLen = rd[i] - 1;
      }
    }
    return s.substr(start, maxLen);
  }
};
int main(int argc, char *argv[])
{
    string s="aacdefcaa";
    
    Solution solution;
    string ret = solution.longestPalindrome(s);
    cout<<ret<<endl;
    system("pause");
    return 0;
}

leetcode5 最长回文字符串 动态规划 Manacher法的更多相关文章

  1. leetcode-5 最长回文子串(动态规划)

    题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...

  2. Manacher算法:求解最长回文字符串,时间复杂度为O(N)

    原文转载自:http://blog.csdn.net/yzl_rex/article/details/7908259 回文串定义:"回文串"是一个正读和反读都一样的字符串,比如&q ...

  3. 最长回文字符串(manacher算法)

    偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid. 题目描述:      回文串就是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串. ...

  4. 【转载】最长回文字符串(manacher算法)

    原文转载自:http://blog.csdn.net/lsjseu/article/details/9990539 偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid ...

  5. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  6. 最长回文子串的Manacher算法

    对于一个比较长的字符串,O(n^2)的时间复杂度是难以接受的.Can we do better? 先来看看解法2存在的缺陷. 1) 由于回文串长度的奇偶性造成了不同性质的对称轴位置,解法2要对两种情况 ...

  7. JavaScript之最长回文字符串

    JavaScript经典面试题算法:最长回文字符串 下面的解题方法是通过中心扩散法的方式实现的,具体代码和注释如下(时间复杂度: O(n^2),空间复杂度:O(1)) // str字符串functio ...

  8. 字符串的最长回文串:Manacher’s Algorithm

    题目链接:Longest Palindromic Substring 1. 问题描述 Given a string S, find the longest palindromic substring ...

  9. 计算字符串的最长回文子串 :Manacher算法介绍

    转自: http://www.open-open.com/lib/view/open1419150233417.html Manacher算法 在介绍算法之前,首先介绍一下什么是回文串,所谓回文串,简 ...

随机推荐

  1. 在EXCEL中如何同时冻结行与列?

    鼠标所在的单元格的位置 ,决定了你冻结的行和列.如: 冻结第一行与第一列, 只需要将鼠标置于单元格在第二列,第二行. 点击冻结

  2. flask文件下载

    后端的代码 # coding:utf-8 from flask import Flask app = Flask(__name__) @app.route("/upload", m ...

  3. 本地Mac通过堡垒机代理实现跨堡垒机scp问题

    近日,公司在跳板机前架设了堡垒机,以防止ssh攻击,但这带来一个问题,我们平常直接ssh跳板机,可以直接使用scp来上传或下载跳板机数据到本地 架设堡垒之后经常使用的scp工具不好用了 于是本期就来解 ...

  4. CentOS 镜像下载地址

    CentOS镜像地址:http://isoredirect.centos.org/altarch/7/isos/i386/

  5. DP中的树上边/点覆盖问题

    目录 树上边覆盖问题 例:luoguP2016 战略游戏 简述题意: Solution: Code 树上点覆盖问题 简述题意 Solution Code: 树上边覆盖问题 例:luoguP2016 战 ...

  6. Xctf-easyapk

    Xctf-easyapk Write UP 前期工作 查壳 无壳 运行 没什么特别的 逆向分析 使用jadx反编译查看代码 先看看文件结构 MainActivity代码 public class Ma ...

  7. Centos7部署FytSoa项目至Docker——第一步:安装Docker

    FytSoa项目地址:https://gitee.com/feiyit/FytSoaCms 部署完成地址:http://82.156.127.60:8000/ 先到腾讯云申请一年的云服务器,我买的是一 ...

  8. python——模块、标准库、第三方模块安装

    模块(module)简介 模块化--指将一个完整的程序分解为一个一个小的模块,通过将模块组合,来搭建出一个完整的程序. 模块化的特点: ① 方便开发 ② 方便维护 ③ 模块可以复用! 在Python中 ...

  9. 常用的trigger表达式

    1.Name:Incoming traffic on interface {#SNMPVALUE} is greater than 300Mb, now is {ITEM.VALUE} Express ...

  10. Spring Boot自定义starter必知必会条件

    前言 在目前的Spring Boot框架中,不管是Spring Boot官方还是非官方,都提供了非常多的starter系列组件,助力开发者在企业应用中的开发,提升研发人员的工作效率,Spring Bo ...