1005E1 Median on Segments (Permutations Edition) 【思维+无序数组求中位数】
题目:戳这里
百度之星初赛原题:戳这里
题意:n个不同的数,求中位数为m的区间有多少个。
解题思路:
此题的中位数就是个数为奇数的数组中,小于m的数和大于m的数一样多,个数为偶数的数组中,小于m的数比大于m的数少一。因此,维护比m小和比m大的数就行。
m~n进行处理,比m大的cnt++,比m小的cnt--,用vis数组记录每个cnt值的个数。
m~1再进行处理,比m大的cnt++,比m小的cnt--,ans+=vis[cnt]+vis[cnt+1],vis[cnt]可以理解为是右边有cnt个比m大的数的情况(n为奇数,vis[cnt+1]是右边有cnt个比m大的数的情况(n为偶数。(当然真正的数值并不代表这个意思,因为出现比m小的数时cnt--了,在这里形容是为了便于理解。
这样操作的意思是,先预处理[pos[m],r]的所有情况,在遍历[l,pos[m]]的所有情况时,直接求出答案。
代码比文字好理解:
1 #include <bits/stdc++.h>
2 typedef long long ll;
3 const int maxn = 1e6+10;
4 const int inf = 0x3f3f3f3f;
5 const ll mod = 998244353;
6 using namespace std;
7 int a[maxn];
8 map<int,int>vis;
9 int main(){
10 int n, m;
11 scanf("%d %d", &n, &m);
12 int pos = 0;
13 for(int i = 1; i <= n; ++i) {
14 scanf("%d",a+i);
15 if(a[i] == m) pos = i;
16 }
17 int cnt = 0;
18 for(int i = pos; i <= n; ++i) {
19 if(a[i] > m) ++cnt;
20 if(a[i] < m) --cnt;
21 vis[cnt]++;
22 }
23 cnt = 0;
24 ll ans = 0;
25 for(int i = pos; i >= 1; --i) {
26 if(a[i] > m) --cnt;
27 if(a[i] < m) ++cnt;
28 ans += vis[cnt]+vis[cnt+1];//此时m左边的大小情况为cnt,要找右边为cnt和cnt+1的情况
29 }
30 printf("%lld\n", ans);
31 return 0;
32 }
1005E1 Median on Segments (Permutations Edition) 【思维+无序数组求中位数】的更多相关文章
- CF1005E1 Median on Segments (Permutations Edition) 思维
Median on Segments (Permutations Edition) time limit per test 3 seconds memory limit per test 256 me ...
- Codeforces Round #496 (Div. 3 ) E1. Median on Segments (Permutations Edition)(中位数计数)
E1. Median on Segments (Permutations Edition) time limit per test 3 seconds memory limit per test 25 ...
- Codeforces Round #496 (Div. 3) E1. Median on Segments (Permutations Edition) (中位数,思维)
题意:给你一个数组,求有多少子数组的中位数等于\(m\).(若元素个数为偶数,取中间靠左的为中位数). 题解:由中位数的定义我们知道:若数组中\(<m\)的数有\(x\)个,\(>m\)的 ...
- Codeforces #496 E1. Median on Segments (Permutations Edition)
http://codeforces.com/contest/1005/problem/E1 题目 https://blog.csdn.net/haipai1998/article/details/80 ...
- 无序数组求第K大的数
问题描述 无序数组求第K大的数,其中K从1开始算. 例如:[0,3,1,8,5,2]这个数组,第2大的数是5 OJ可参考:LeetCode_0215_KthLargestElementInAnArra ...
- [leetcode]4. Median of Two Sorted Arrays俩有序数组的中位数
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...
- LeetCode第[4]题(Java):Median of Two Sorted Arrays (俩已排序数组求中位数)——HARD
题目难度:hard There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median ...
- 无序数组的中位数(set+deque)hdu5249
KPI Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 无序数组求第k大/第k小的数
根据http://www.cnblogs.com/zhjp11/archive/2010/02/26/1674227.html 博客中所总结的7种解法,我挑了其中的解法3和解法6进行了实现. 解法3: ...
随机推荐
- B树的进化版----B+树
C++为什么叫C plus plus?这是由于C++相当于继承C的语法后,增加了各方面的能力,所扩展出的一种新语法.在软件领域中 plus 有增加的味道.在这里B +树也一样,是B树的增强版.在学习B ...
- tail -f 在对文件进行动态追踪时失效的问题
在我是用 tail -f file.txt 对这个文件进行动态追踪时: 我重新打开一个新的终端进行vim编辑这个文件并且保存 这是我们发现,tail -f file.txt'动态追踪的这个文件没有任何 ...
- Caffeine 缓存库
介绍 Caffeine是一个基于Java8开发的提供了近乎最佳命中率的高性能的缓存库. 缓存和ConcurrentMap有点相似,但还是有所区别.最根本的区别是ConcurrentMap将会持有所有加 ...
- Bitter.Core系列七:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore ORM 示例 更新删除插入
Bitter Orm 在操作数据库增删改的时候,支持模型驱动和直接执行裸SQL 操作,示例代码如下: 一:模型驱动(增删改) /// <summary> /// 插入,删除,更新示例(模型 ...
- libco协程原理简要分析
此文简要分析一下libco协程的关键原理. 在分析前,先简单过一些协程的概念,以免有新手误读了此篇文章. 协程是用户态执行单元,它的创建,执行,上下文切换,挂起,销毁都是在用户态中完成,对linux系 ...
- worker 启动时向 etcd 注册自己的信息,并设置一个带 TTL 的租约,每隔一段时间更新这个 TTL,如果该 worker 挂掉了,这个 TTL 就会 expire 并删除相应的 key。
1.通过etcd中的选主机制,我们实现了服务的高可用.同时利用systemd对etcd本身进行了保活,只要etcd服务所在的机器没有宕机,进程就具备了容灾性. https://mp.weixin.qq ...
- LibreOJ #10047
应同机房某大佬的要求来写这篇题解 Description 给定一个字符串 \(S\) 和一个数 \(K\),要求求出 \(S\) 的所有形似 \(A+B+A\) 的子串数量,其中 \(\mid A\m ...
- noip 注意事项 (个人向)
目录 非常重要 对拍 空间 极限数据 模数,YES/NO等大小写 个人 考场 神仙 czdzx 说要写,我也来写 非常重要 对拍 空间 极限数据 模数,YES/NO等大小写 个人 养身体,不要紧张,不 ...
- ResponseEntity和@ResponseBody以及@ResponseStatus区别
看的迷迷糊糊的 https://www.jdon.com/springboot/responseentity.html
- 静默安装Oracle也没那么恐怖
几种必须静默安装的情况 服务器为了减少资源占用,没安装图形组件 不能进入机房,只能远程SSH 想炫(Z)耀(B),静默安装显得有技术含量 磁盘分区要求 如没有特别要求,装机时可按如下分区比较好管理 / ...