SPOJ REPEATS Repeats (后缀数组 + RMQ:子串的最大循环节)题解
题意:
给定一个串\(s\),\(s\)必有一个最大循环节的连续子串\(ss\),问最大循环次数是多少
思路:
我们可以知道,如果一个长度为\(L\)的子串连续出现了两次及以上,那么必然会存在\(s[0]、s[L]、s[2L] \cdots s[L * k]\)中至少有两个连续的位置是相同的,然后看字母\(s[L * i]和s[L * (i + 1)]\)往前往后最多能匹配多远,记住总长度\(len\),那么最大循环次数为\((len / L) + 1\)。
参考:
代码:
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 50000 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 11;
const int MOD = 1e9 + 7;
using namespace std;
//下标从0开始
int str[maxn]; //str[n]赋值一个最小值0,其他大于0
int t1[maxn], t2[maxn], c[maxn];
int sa[maxn]; //排名为i的后缀下标
int rk[maxn]; //后缀下标为i的排名
int height[maxn]; //sa[i]与sa[i - 1]的LCP
int mm[maxn];
int dp[maxn][30];
bool cmp(int *r, int a, int b, int l){
return r[a] == r[b] && r[a + l] == r[b + l];
}
void da(int *str, int n, int m){
n++;
int i, j, p, *x = t1, *y = t2;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[i] = str[i]]++;
for(i = 1; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
for(j = 1; j <= n; j <<= 1){
p = 0;
for(i = n - j; i < n; i++) y[p++] = i;
for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[y[i]]]++;
for(i = 1; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = 1; x[sa[0]] = 0;
for(i = 1; i < n; i++)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j)? p - 1 : p++;
if(p >= n) break;
m = p;
}
int k = 0;
n--;
for(i = 0; i <= n; i++) rk[sa[i]] = i;
for(i = 0; i < n; i++){
if(k) k--;
j = sa[rk[i] - 1];
while(str[i + k] == str[j + k]) k++;
height[rk[i]] = k;
}
}
void initRMQ(int n){
mm[0] = -1;
for(int i = 1; i <= n; i++){
dp[i][0] = height[i];
mm[i] = ((i & (i - 1)) == 0)? mm[i - 1] + 1 : mm[i - 1];
}
for(int j = 1; j <= mm[n]; j++)
for(int i = 1; i + (1 << j) - 1 <= n; i++)
dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
}
int RMQ(int L, int R){
int k = mm[R - L + 1];
return min(dp[L][k], dp[R - (1 << k) + 1][k]);
}
int LCP(int i, int j){ //求后缀i和j的LCP最长公共前缀
int L = rk[i], R = rk[j];
if(L > R) swap(L, R);
L++;
return RMQ(L, R);
}
int main(){
int T;
scanf("%d", &T);
while(T--){
int n;
scanf("%d", &n);
for(int i = 0; i < n; i++){
char ss[2];
scanf("%s", ss);
str[i] = ss[0] - 'a' + 1;
}
str[n] = 0;
da(str, n, 3);
initRMQ(n);
int ans = 1;
for(int i = 1; i < n; i++){
for(int j = 0; j + i < n; j += i){
int len = LCP(j, j + i);
int times = len / i + 1;
int pos = j - (i - len % i);
if(pos >= 0){
len = LCP(pos, pos + i);
times = max(times, len / i + 1);
}
ans = max(ans, times);
}
}
printf("%d\n", ans);
}
return 0;
}
SPOJ REPEATS Repeats (后缀数组 + RMQ:子串的最大循环节)题解的更多相关文章
- spoj687 REPEATS - Repeats (后缀数组+rmq)
A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed strin ...
- 【uva10829-求形如UVU的串的个数】后缀数组+rmq or 直接for水过
题意:UVU形式的串的个数,V的长度规定,U要一样,位置不同即为不同字串 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&am ...
- POJ 3693 后缀数组+RMQ
思路: 论文题 后缀数组&RMQ 有一些题解写得很繁 //By SiriusRen #include <cmath> #include <cstdio> #includ ...
- 【SPOJ – REPEATS】 后缀数组【连续重复子串】
字体颜色如何 字体颜色 SPOJ - REPEATS 题意 给出一个字符串,求重复次数最多的连续重复子串. 题解 引自论文-后缀数组--处理字符串的有力工具. 解释参考博客 "S肯定包括了字 ...
- SPOJ 687 Repeats(后缀数组+ST表)
[题目链接] http://www.spoj.com/problems/REPEATS/en/ [题目大意] 求重复次数最多的连续重复子串的长度. [题解] 考虑错位匹配,设重复部分长度为l,记s[i ...
- SPOJ Repeats(后缀数组+RMQ-ST)
REPEATS - Repeats no tags A string s is called an (k,l)-repeat if s is obtained by concatenating k& ...
- Spoj-DISUBSTR - Distinct Substrings~New Distinct Substrings SPOJ - SUBST1~(后缀数组求解子串个数)
Spoj-DISUBSTR - Distinct Substrings New Distinct Substrings SPOJ - SUBST1 我是根据kuangbin的后缀数组专题来的 这两题题 ...
- Ural1297 最长回文子串(后缀数组+RMQ)
/* 源程序丢失QWQ. 就不粘代码了. 大体做法是把串反转然后连接. 做一遍后缀数组. 对height做一遍rmq. 然后对于每个位置的奇偶分别判断, 记下pos. 注意求的是[l+1,r]的hei ...
- SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )
题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...
随机推荐
- [Noip模拟题]Seq
题目描述 由于hyf长得实在是太帅了,英俊潇洒,风流倜傥,人见人爱,花见花开,车见车载.有一群MM排队看hyf.每个MM都有自己独特的风格,由于hyf有着一颗包容的心,所以,什么风格的MM他都喜欢-- ...
- [Usaco2010 Hol]cowpol 奶牛政坛
题目描述: 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片草地出发都可 ...
- Spring依赖注入的方式、类型、Bean的作用域、自动注入、在Spring配置文件中引入属性文件
1.Spring依赖注入的方式 通过set方法完成依赖注入 通过构造方法完成依赖注入 2.依赖注入的类型 基本数据类型和字符串 使用value属性 如果是指向另一个对象的引入 使用ref属性 User ...
- 【Android初级】如何动态添加菜单项(附源码+避坑)
我们平时在开发过程中,为了灵活多变,除了使用静态的菜单,还有动态添加菜单的需求.今天要分享的功能如下: 在界面的右上角有个更多选项,点开后,有两个子菜单:关于和退出 点击"关于", ...
- Shell从入门到精通
熟悉基本shell操作不仅是运维的基本功,对于开发来说也是多多益善,我在学习的过程中,总结了十个练手的小demo,并附上涉及的知识点,仅供娱乐. 1. 多线程ping监控,检查同一网段的IP是否连通 ...
- Maven 中央仓库
概述 当你建立一个 Maven 的项目,Maven 会检查你的 pom.xml 文件,以确定哪些依赖下载.首先,Maven 将从本地资源库获得 Maven 的本地资源库依赖资源,如果没有找到,然后把它 ...
- CSS Color Adjustment Module Level 1
CSS Color Adjustment Module Level 1 https://drafts.csswg.org/css-color-adjust-1/ DarkMode 适配指南 | 微信开 ...
- grpc-metadata
https://github.com/grpc/grpc-go/blob/master/Documentation/grpc-metadata.md https://github.com/grpc/g ...
- 后端API接口的错误信息返回规范
前言 最近我司要制定开发规范.在讨论接口返回的时候,后端的同事询问我们前端,错误信息的返回,前端有什么意见? 所以做了一些调研给到后端的同事做参考. 错误信息返回 在使用API时无可避免地会因为各种情 ...
- STM32 定时器详细篇(基于HAL库)
l 16位的向上.向下.向上/向下(中心对齐)计数模式,支持自动重装载 l 16位的预分频器 l 每个定时器都有多个独立通道,每个通道可用于 * 输入捕获 * 输出比较 * PWM输出 * ...