遍历方案
    从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
    1).访问结点本身(N)
    2).遍历该结点的左子树(L)
    3).遍历该结点的右子树(R)

有次序:
    NLR、LNR、LRN

遍历的命名

 根据访问结点操作发生位置命名:
NLR:前序遍历(PreorderTraversal亦称(先序遍历))  ——访问结点的操作发生在遍历其左右子树之前。
LNR:中序遍历(InorderTraversal)  ——访问结点的操作发生在遍历其左右子树之中(间)。
LRN:后序遍历(PostorderTraversal)    ——访问结点的操作发生在遍历其左右子树之后。

注:由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

遍历算法

1).先序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.访问根结点
b.遍历左子树
c.遍历右子树

2).中序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.访问根结点
c.遍历右子树

3).后序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.遍历右子树
c.访问根结点

一、二叉树的递归遍历:

# -*- coding: utf - 8 - *-
class TreeNode(object): def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data class BTree(object): def __init__(self, root=0):
self.root = root def is_empty(self):
if self.root is 0:
return True
else:
return False def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
if treenode is 0:
return
print(treenode.data)
self.preorder(treenode.left)
self.preorder(treenode.right) def inorder(self, treenode):
'中序(in-order,LNR'
if treenode is 0:
return
self.inorder(treenode.left)
print(treenode.data)
self.inorder(treenode.right) def postorder(self, treenode):
'后序(post-order,LRN)遍历'
if treenode is 0:
return
self.postorder(treenode.left)
self.postorder(treenode.right)
print(treenode.data) node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root') bt = BTree(root) print(u''' #生成的二叉树 # ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- ''')
print('前序(pre-order,NLR)遍历 :\n')
bt.preorder(bt.root) print('中序(in-order,LNR) 遍历 :\n')
bt.inorder(bt.root) print('后序(post-order,LRN)遍历 :\n')
bt.postorder(bt.root)

输出:

#生成的二叉树

# ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- 前序(pre-order,NLR)遍历 : root
7
6
2
1
5
3
4
8
中序(in-order,LNR) 遍历 : 1
2
6
3
5
4
7
root
8
后序(post-order,LRN)遍历 : 1
2
3
4
5
6
7
8
root

二、.二叉树的非递归遍历

下面就用非递归的方式实现一遍。主要用到了 stack 和 queue维护一些数据节点:

# -*- coding: utf - 8 - *-
class TreeNode(object): def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data class BTree(object): def __init__(self, root=0):
self.root = root def is_empty(self):
if self.root is 0:
return True
else:
return False def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
stack = []
while treenode or stack:
if treenode is not 0:
print(treenode.data)
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
treenode = treenode.right def inorder(self, treenode):
'中序(in-order,LNR) 遍历'
stack = []
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
print(treenode.data)
treenode = treenode.right # def postorder(self, treenode):
# stack = []
# pre = 0
# while treenode or stack:
# if treenode:
# stack.append(treenode)
# treenode = treenode.left
# elif stack[-1].right != pre:
# treenode = stack[-1].right
# pre = 0
# else:
# pre = stack.pop()
# print pre.data def postorder(self, treenode):
'后序(post-order,LRN)遍历'
stack = []
queue = []
queue.append(treenode)
while queue:
treenode = queue.pop()
if treenode.left:
queue.append(treenode.left)
if treenode.right:
queue.append(treenode.right)
stack.append(treenode)
while stack:
print(stack.pop().data) def levelorder(self, treenode):
from collections import deque
if not treenode:
return
q = deque([treenode])
while q:
treenode = q.popleft()
print(treenode.data)
if treenode.left:
q.append(treenode.left)
if treenode.right:
q.append(treenode.right) node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root') bt = BTree(root) print(u''' #生成的二叉树 # ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- ''')
print('前序(pre-order,NLR)遍历 :\n')
bt.preorder(bt.root) print('中序(in-order,LNR) 遍历 :\n')
bt.inorder(bt.root) print('后序(post-order,LRN)遍历 :\n')
bt.postorder(bt.root) print('层序(level-order,LRN)遍历 :\n')
bt.levelorder(bt.root)

输出:

#生成的二叉树

# ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# ------------------------- 前序(pre-order,NLR)遍历 : root
7
6
2
1
5
3
4
8
中序(in-order,LNR) 遍历 : 1
2
6
3
5
4
7
root
8
后序(post-order,LRN)遍历 : 1
2
3
4
5
6
7
8
root
层序(level-order,LRN)遍历 : root
7
8
6
2
5
1
3
4

python数据结构之二叉树的遍历实例的更多相关文章

  1. python数据结构之二叉树的建立实例

    先建立二叉树节点,有一个data数据域,left,right 两个指针域 # coding:utf-8 class TreeNode(object): def __init__(self,left=N ...

  2. python数据结构之二叉树的统计与转换实例

    python数据结构之二叉树的统计与转换实例 这篇文章主要介绍了python数据结构之二叉树的统计与转换实例,例如统计二叉树的叶子.分支节点,以及二叉树的左右两树互换等,需要的朋友可以参考下 一.获取 ...

  3. 【数据结构】二叉树的遍历(前、中、后序及层次遍历)及leetcode107题python实现

    文章目录 二叉树及遍历 二叉树概念 二叉树的遍历及python实现 二叉树的遍历 python实现 leetcode107题python实现 题目描述 python实现 二叉树及遍历 二叉树概念 二叉 ...

  4. 算法与数据结构(三) 二叉树的遍历及其线索化(Swift版)

    前面两篇博客介绍了线性表的顺序存储与链式存储以及对应的操作,并且还聊了栈与队列的相关内容.本篇博客我们就继续聊数据结构的相关东西,并且所涉及的相关Demo依然使用面向对象语言Swift来表示.本篇博客 ...

  5. 【PHP数据结构】二叉树的遍历及逻辑操作

    上篇文章我们讲了许多理论方面的知识,虽说很枯燥,但那些都是我们今天学习的前提,一会看代码的时候你就会发现这些理论知识是多么地重要了.首先,我们还是要说明一下,我们学习的主要内容是二叉树,因为二叉树是最 ...

  6. python数据结构之二叉树遍历的实现

    本篇是实现二叉树的三种遍历,先序遍历,中序遍历,后序遍历 #!/usr/bin/python # -*- coding: utf-8 -*- class TreeNode(object): def _ ...

  7. Python数据结构之二叉树

    本来打算一个学期分别用C++.Python.Java实现数据结构,看来要提前了 这个是Python版本,我写的数据结构尽量保持灵活性,本文bt1是一般的插入法建立二叉树结构,bt2就是可以任意输入,至 ...

  8. python数据结构之二叉树的实现

    树的定义 树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形 ...

  9. python 数据结构之二叉树

    二叉树关键在构建和遍历,python实现相对简单,我们在实现需要用到类,分别设置爱左右子树,根节点,然后从根进行遍历,进行判断,若为空进行树的构建,非空则返回到列表中即可,我在进行遍历时产生了一个错误 ...

随机推荐

  1. Htmlcss学习笔记2——选择器与常用样式

    CSS引入类型 行内样式 内联样式 外部样式表 CSS选择器 基本选择器 复合选择器 伪类选择器 属性选择器 CSS字体样式 font-size font-family font-style font ...

  2. Python开发的入门教程(六)-函数

    介绍 本文主要介绍Python中函数的基本知识和使用 Python之什么是函数 我们知道圆的面积计算公式为: S = πr² 当我们知道半径r的值时,就可以根据公式计算出面积.假设我们需要计算3个不同 ...

  3. Transform与Vector3 的API

    Transform.InverseTransformDirection(Vector3 direction) Vector3.ProjectOnPlane(Vector3 vector, Vector ...

  4. java返回树形结构的正确姿势

    业务场景 通常我们前端需要一个树形的导航菜单或者分类菜单,如后台权限管理中的权限树,亦或者下面例子中商城系统的商品分类多级菜单(一般为三级菜单) 数据库设计 数据库设计,采用parentId来指向自己 ...

  5. JS中有趣的内置对象-JSON

    前言 在以前的web开发中,我们多数选择纯文本或XML作为我们的提交的数据格式,大多数是XML,少数纯文本.其实从AJAX(Asynchronous JavaScript and XML)的命名我们也 ...

  6. [oracle/sql]写SQL从学生考试成绩三表中选出五门分综合超过720的尖子

    任务:有学生,科目,考分三张表,需要从中筛选出五门考分总和超过720的学生. 科目表最简单只有五条记录: CREATE TABLE tb_course ( id NUMBER not null pri ...

  7. 从一知半解到揭晓Java高级语法—泛型

    目录 前言 探讨 泛型解决了什么问题? 扩展 引入泛型 什么是泛型? 泛型类 泛型接口 泛型方法 类型擦除 擦除的问题 边界 通配符 上界通配符 下界通配符 通配符和向上转型 泛型约束 实践总结 泛型 ...

  8. SSM框架整合核心内容

    所需要的jar包及其版本 Spring 版本:4.3.18   tx.aop.beans.core.web.web-mvc.context.expression.jdbc MyBatis:3.4.6 ...

  9. redis并发问题2

    转自https://mp.weixin.qq.com/s?__biz=MzI1NDQ3MjQxNA==&mid=2247485464&idx=1&sn=8d690fc6f878 ...

  10. python文档翻译之python说明

    3.1使用Python进行计数 让我们来使用一些Python的简单命令,通过终端启动解释器等待出现>>>. 3.1.1数值类型 在终端中输入数学表达式,Python解释器会执行这些表 ...