大家好!在上篇文章中,我们一起学习了如何【掌握正确的数据处理思维】。在完成数据准备和清理工作后,就要进入到正式分析阶段,而选择什么样的数据分析方法进行分析是关键。

想要进行科学和系统化的数据分析,分析方法的思维是必备项。

本文为SPSSAU数据分析思维培养的第2篇文章,将分别从数据类型谈起,剖析数据应该如何分析,包括数据的基础描述,数据质量的判断。除此之外,还进行差异关系,影响关系涉及的分析方法解析,最后针对更深入的影响关系进行说明。

希望通过本文帮助大家更快地掌握数学分析的思维,使用正确和科学的分析方法,完成科学的研究报告。

第1点,数据类型

进行数据分析的第一个思维,数据类型的识别。数据一般分成两类,定类和定量,如下:

如果数据是类别,比如性别,或者医学上的阳性阴性,数字1表示男2表示女;也或者数字1表示阳性0表示阴性。数字的大小是不能进行PK对比,而只能代表类别,此类数据SPSSAU称为‘定类数据’(也称分类数据,定性数据等)。还有一类数据比如身高体重年龄,数字的大小具有实际意义可以对比大小,数字越大身高越高,体重越重,年龄越大,此类数据SPSSAU称为‘定量数据’(也称连续数据)。

还有一种数据即像定类数据,也像定量数据。比如学历分成4组,分别是大专以下,大专,本科,本科以上,分别使用数字1,2,3,4标识。我们可以把其看成是四个类别,也可以看成是数字越大学历越高。针对此种数据在具体分析的时候需要看实际情况,一般来说把它看成定类数据更方便分析,那就看成是定类数据;如果把它看成定量数据更方便,那就看成是定量数据。

定类和定量数据的最大区别在于:定类数据一般是看频数百分比,定量数据一般是看平均值;而且分析上定类数据一般只能看差异性,定量数据一般是看影响关系。接下来的内容中会更加理解这种思维上的区别。

第2点,基础描述

上述第1点已经说明了数据类型的鉴别方法,那么针对定类数据来讲,一般就是使用频数分析,查看选择频数和百分比;如果是定量数据一般就使用描述分析,查看平均值和中位数等。此两项分析均可在SPSSAU通用方法里面轻松地找到。

 
频数、描述分析-SPSSAU

得到一份数据后,通常第一步就是查看数据情况,分别对定类和定量数据做下简要的分析,以便对于数据基本特征有个大概的了解,同时可查到数据是否具有异常值情况等。比如对身高做描述分析发现最小值为负数。

如果数据中有发现异常值,此时需要及时的进行处理,如果有异常数据但没有处理,这种情况会导致后续的分析完全无用,因为异常数据对于分析的影响巨大。SPSSAU数据处理里面有异常值功能,同时生成变量也提供比如Winsor处理等。

异常值处理-SPSSAU

第3点,数据质量

 

除了对数据基础情况有所了解外,还需要分析下数据的质量情况,如果数据中有量表,那么信度分析和效度分析最好不过。效度分析时可使用EFA和CFA,即探索性因子和验证性因子分析方法进行。信度或者效度分析等都是针对量表问卷一类的数据。

 
信度、效度分析-SPSSAU

如果是实验数据,也或者专家打分数据等,此类数据不能做问卷式的信度和效度分析,但是可用于评定数据的一致性情况等,当然也是用于验证数据的有效可靠性等。此时可使用相关的方法比如ICC组内相关系数,Kappa系数,Kendall系数,也或者使用相关系数方法等,具体一致性检验方法的区别和使用情况,建议查看SPSSAU手册,医学/实验研究方法里面均有提供对应的研究方法。

 

第4点,差异关系

上述已经提及数据的类型,数据质量判断,当所有数据都准备完善,去除掉无效样本,异常值之后,数据质量也达标后。那么进入正式的分析就显得顺其自然。什么是差异关系呢,接下来举例说明:

 

如果是定类数据的差异性,那么可使用卡方拟合优度检验。比如想研究阳性和阴性这两个组别的样本比例是否有差异性。如果是研究2个定类数据的差异性,则需要使用卡方检验,SPSSAU有两个按钮均可进行卡方检验,包括通用方法里面的交叉卡方和医学研究里面的卡方检验,区别在于后者可提供更多深入指标以及支持加权数据格式。

如果是定量数据的差异性,比如想研究样本群体平均身高是否等于1.8,一般是使用单样本T检验,但如果身高数据并不符合正态性时,此时可使用单样本Wilcoxon检验。

如果是研究定类和定量数据的差异性,比如想研究不同性别群体的体重上是否有明显的差异性,那么方差分析或T检验均可,区别在于方差可对比多重(比如东北、西南、东南三个地区的差异),而T检验只对比两组(比如男和女)的差异性。除此之外,如果这里体重这个数据严重的不正态时,最好使用非参数检验进行,SPSSAU通用方法里面有提供此方法。

如果是配对实验数据,比如实验前患病状态(阳性和阴性),与实验后患病状态(阳性和阴性)的差异对比,明显的是实验数据且为定类数据差异对比,此时需要使用配对卡方。如果是实验前成绩和实验后成绩的对比,那么是实验数据且定量数据差异对比,此时使用配对T检验较多,当然如果说成绩这个定量数据严重的不正态,此时使用配对Wilcoxon检验也许更优。

特别提示一点,实验数据是指‘实验前和实验后’,也或者‘同一个样本分别测量两次’这种情况。常见的实验组和对照组数据并不是绝对的实验数据,对比差异时一般是使用普通的T检验,而不是配对T检验。

除此之外,有时候实验数据的对比,比如同一个病例进行3次测量,测量1、测量2、测量3的对比差异性,此时可使用比如Friedman检验等。

第5点,影响关系

 

上述讲完差异关系,差异系数研究时,基本上都会有定类数据。因为定类数据是不同的类别,不同类别间只能说类别A和类别B是否有明显的不一样,也就是差异性。定量数据能说越怎么样越怎么样,比如身高越高体重越重。因此定量数据更容易进行影响关系,即带‘回归’二字的影响关系研究。

影响关系是研究X影响Y;如果Y是定量数据,那么一般是使用线性回归;线性回归的使用频率最高而且深入最高,其延迟出来还有比如分层线性回归、逐步回归等等,其实质上就是线性回归,只是另外一种变形(为了解决特定问题而产生)而已。

如果Y是定类数据,那么就应该使用Logit回归等。Logit回归还可分为3类,如果Y是二分类(比如是和否),那么就叫二元Logit回归;如果Y是多个类别,那么就叫多分类Logit回归。如果说Y是定类数据(但同时又可看成是定量数据),那么可使用有序多分类Logit回归。

 

除此之外,如果研究的回归影响关系是曲线的,比如二次曲线,三次曲线等,那么就可以使用曲线回归。

针对X对于Y的研究上,一般情况下是多个X对于1个Y的影响;如果是研究多个X对于多个Y的影响,那么可选的方法包括PLS回归、典型相关等。

第6点,深入影响关系

除上一部分的影响关系研究外,还有更深入的影响关系拓展。比如心理学、管理学上的调节作用或中介作用研究等,其实质上就是线性回归的升华和拓展,它们是分析方法的实质应用,比如调节作用和中介作用,一般就是使用分层线性回归进行验证。

当然当前还有更深入的研究,比如多个X和多个Y之间的影响关系情况研究,可使用路径模型,结构方程模型等进行深入分析。否则的话就需要重复进行多次线性回归分析。

 
路径分析、结构方程模型-SPSSAU

除此之外,当前还有一些更深入的影响关系研究,比如面板回归模型,岭回归等,其实质上依旧是影响关系研究。但区别在于比如面板回归模型,它是特定对于面板数据进行的回归影响关系研究。岭回归是特定解决数据的共线性问题共诞生的研究方法而已,全部在SPSSAU平台里面均能找到。

总结

数据分析思维的培训上,最关键的是数据类型的区别,接着针对数据的清理(即通过基础描述和数据质量的分析),并且区分数据类型后,采用差异研究和影响关系,也或者更深入的影响关系研究,最终为实际研究服务。

一篇文章无法全部概括所有的研究,希望对数据分析思维有所引导。比如数据其实还有其它的研究,包括数据浓缩(主成分或因子分析)、数据聚类(Kmeans聚类、分层聚类)等等,在后续的文章中均会单独进行说明。

SPSSAU数据分析思维培养系列2:方法选择篇的更多相关文章

  1. SPSSAU数据分析思维培养系列2:分析方法

    大家好!在上篇文章中,我们一起学习了如何掌握正确的数据处理思维(文章链接:https://www.cnblogs.com/spssau/p/12523530.html).在完成数据准备和清理工作后,就 ...

  2. SPSSAU数据分析思维培养系列4:数据可视化篇

    本文章为SPSSAU数据分析思维培养的第4期文章. 前3期内容分别讲述数据思维,分析方法和分析思路.本文讲述如何快速使用SPSSAU进行高质量作图,以及如何选择使用正确的图形. 本文分别从五个角度进行 ...

  3. SPSSAU数据分析思维培养系列3:分析思路篇

    本文章为SPSSAU数据分析思维培养的第3期文章. 上文讲解如何选择正确的分析方法,除了有正确的分析方法外,还需要把分析方法进行灵活运用.拿到一份数据,应该如何进行分析,总共有几个步骤,第一步第二步应 ...

  4. SPSSAU数据分析思维培养系列1:数据思维篇

    今天,SPSSAU给大家带来[数据分析思维培养]系列课程.主要针对第一次接触数据分析,完全不懂分析的小白用户,或者懂一些简单方法但苦于没有分析思路,不知道如何规范化分析. 本文章为SPSSAU数据分析 ...

  5. SPSSAU数据分析思维培养系列3:分析思路

    本文章为SPSSAU数据分析思维培养的第3期文章. 上文讲解如何选择正确的分析方法,除了有正确的分析方法外,还需要把分析方法进行灵活运用.拿到一份数据,应该如何进行分析,总共有几个步骤,第一步第二步应 ...

  6. VMware Workstation 精致汉化系列 使用方法

    http://kuai.xunlei.com/d/QqGABAKChQBwMzxR983   迅雷快传 XP系统之家-温馨提示: VMware Workstation 精致汉化系列 使用方法:1.安装 ...

  7. SQL Server 临时表和表变量系列之选择篇

    原文地址:https://yq.aliyun.com/articles/69187 摘要: # 摘要 通过前面的三篇系列文章,我们对临时表和表变量的概念.对比和认知误区已经有了非常全面的认识.其实,我 ...

  8. java String拼接的方法选择及性能分析

    String 拼接的方法选择 在拼接静态字符串时,尽量用 +,因为通常编译器会对此做优化,如: String test = "this " + "is " + ...

  9. 科普:为什么 String hashCode 方法选择数字31作为乘子

    作者:coolblog 此文章转载自:https://segmentfault.com/a/1190000010799123 1. 背景 某天,我在写代码的时候,无意中点开了 String hashC ...

随机推荐

  1. 修改docker中mysql登入密码(包括容器内和本地远程登入的密码)

    查看docker中正在运行的容器 docker ps 进入MySQL 容器中 sudo docker exec -it cd800a1cd503 /bin/bash 在容器中: /etc/mysql/ ...

  2. 删除GIT中的.DS_Store

    转载自:https://www.jianshu.com/p/fdaa8be7f6c3 .DS_Store 是什么 使用 Mac 的用户可能会注意到,系统经常会自动在每个目录生成一个隐藏的 .DS_St ...

  3. 使用MacOS直播

    参考链接:https://www.jianshu.com/p/94f42a793a7e 参考链接:https://blog.dreamtobe.cn/live_guideline/ 所需软件  密码: ...

  4. PHP date_parse_from_format() 函数

    ------------恢复内容开始------------ 实例 根据指定的格式返回一个包含指定日期信息的关联数组: <?phpprint_r(date_parse_from_format(& ...

  5. PHP registerXPathNamespace() 函数

    实例 为下一个 XPath 查询创建命名空间上下文: <?php$xml=<<<XML高佣联盟 www.cgewang.com<book xmlns:chap=" ...

  6. MediaDevices.getUserMedia()

    MediaDevices.getUserMedia() 会提示用户给予使用媒体输入的许可,媒体输入会产生一个MediaStream,里面包含了请求的媒体类型的轨道.此流可以包含一个视频轨道(来自硬件或 ...

  7. 基于.NetCore3.1系列 —— 日志记录之日志配置揭秘

    一.前言 在项目的开发维护阶段,有时候我们关注的问题不仅仅在于功能的实现,甚至需要关注系统发布上线后遇到的问题能否及时的查找并解决.所以我们需要有一个好的解决方案来及时的定位错误的根源并做出正确及时的 ...

  8. spring 命名空间

    命名空间太多了,有必要学习了解一下 xmlns是XML Namespaces的缩写 使用语法: xmlns:namespace-prefix="namespaceURI" xsi全 ...

  9. 【FZYZOJ】「Paladin」瀑布 题解(期望+递推)

    题目描述 CX在Minecraft里建造了一个刷怪塔来杀僵尸.刷怪塔的是一个极高极高的空中浮塔,边缘是瀑布.如果僵尸被冲入瀑布中,就会掉下浮塔摔死.浮塔每天只能工作 $t$秒,刷怪笼只能生成 $N$  ...

  10. 对Word2Vec的理解

    1. word embedding 在NLP领域,首先要把文字或者语言转化为计算机能处理的形式.一般来说计算机只能处理数值型的数据,所以,在NLP的开始,有一个很重要的工作,就是将文字转化为数字,把这 ...