Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds. In each round, Andrew and Jerry draw randomly without replacement from a jar containing n balls,
each labeled with a distinct positive integer. Without looking, they hand their balls to Harry, who awards the point to the player with the larger number and returns the balls to the jar. The
winner of the game is the one who wins at least two of the three rounds.

Andrew wins rounds 1 and 2 while Jerry wins round 3, so Andrew wins the game. However, Jerry is unhappy with this system, claiming that he will often lose the match despite having the higher overall total. What is the probability that the sum of the three balls
Jerry drew is strictly higher than the sum of the three balls Andrew drew?

Input

The first line of input contains a single integer n (2 ≤ n ≤ 2000)
— the number of balls in the jar.

The second line contains n integers ai (1 ≤ ai ≤ 5000)
— the number written on the ith ball. It is guaranteed that no two balls have the same number.

Output

Print a single real value — the probability that Jerry has a higher total, given that Andrew wins the first two rounds and Jerry wins the third. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b.
The checker program will consider your answer correct, if .

Examples
input
2
1 2
output
0.0000000000
input
3
1 2 10
output
0.0740740741
Note

In the first case, there are only two balls. In the first two rounds, Andrew must have drawn the 2 and Jerry must have drawn the 1,
and vice versa in the final round. Thus, Andrew's sum is 5 and Jerry's sum is 4,
so Jerry never has a higher total.

In the second case, each game could've had three outcomes — 10 - 2, 10 - 1,
or 2 - 1. Jerry has a higher total if and only if Andrew won 2 - 1 in
both of the first two rounds, and Jerry drew the 10 in the last round. This has probability .

题意:两个人在做游戏,一个袋子里有n个球,球上的数字大小都不相同,共进行三回合,每一回合两个人同时各自从袋子里拿出一个球,求前两个回合A拿出的球的数字大于B,但是三个回合加起来的数字的和B大于A的概率。

思路:我们可以先用cnt[i]记录一个局面中胜者和败者差值为i的取法数,再用cnt2[i]表示前两个局面胜者和败者差值的总和为i的方案数,然后统计cnt2的前缀和,那么符合题意的方案总数即为for(i=1;i<=5000;i++){tot+=cnt2[i]*cnt[i-1]};

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
ll cnt1[5005],cnt2[10050];
int a[2005]; int main()
{
int n,m,i,j;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
}
sort(a+1,a+1+n);
for(i=1;i<=n;i++){
for(j=1;j<i;j++){
cnt1[a[i]-a[j] ]++;
}
}
for(i=1;i<=5000;i++){
for(j=1;j<=5000;j++){
cnt2[i+j]+=cnt1[i]*cnt1[j];
}
}
for(i=1;i<=10000;i++){
cnt2[i]=cnt2[i]+cnt2[i-1];
}
ll tot=0;
for(i=1;i<=5000;i++){
tot+=cnt2[i-1]*cnt1[i];
}
double num=n*(n-1)/2;
printf("%.10f\n",(double)tot/num/num/num );
}
return 0;
}

codeforces626D . Jerry's Protest (概率)的更多相关文章

  1. codeforces626D . Jerry's Protest

    Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds ...

  2. Codeforces 626D Jerry's Protest(暴力枚举+概率)

    D. Jerry's Protest time limit per test:2 seconds memory limit per test:256 megabytes input:standard ...

  3. 8VC Venture Cup 2016 - Elimination Round D. Jerry's Protest 暴力

    D. Jerry's Protest 题目连接: http://www.codeforces.com/contest/626/problem/D Description Andrew and Jerr ...

  4. Codeforces 626D Jerry's Protest 「数学组合」「数学概率」

    题意: 一个袋子里装了n个球,每个球都有编号.甲乙二人从每次随机得从袋子里不放回的取出一个球,如果甲取出的球比乙取出的球编号大则甲胜,否则乙胜.保证球的编号xi各不相同.每轮比赛完了之后把取出的两球放 ...

  5. 数学(概率)CodeForces 626D:Jerry's Protest

    Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds ...

  6. CodeForces 626D Jerry's Protest

    计算前两盘A赢,最后一盘B赢的情况下,B获得的球的值总和大于A获得的球总和值的概率. 存储每一对球的差值有几个,然后处理一下前缀和,暴力枚举就好了...... #include<cstdio&g ...

  7. codeforce626D (概率)

    D. Jerry's Protest time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. 8VC Venture Cup 2016 - Elimination Round

    在家补补题   模拟 A - Robot Sequence #include <bits/stdc++.h> char str[202]; void move(int &x, in ...

  9. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

随机推荐

  1. 【Flutter】可滚动组件之ListView

    前言 它可以沿一个方向线性排布所有子组件,并且它也可以支持基于Sliver的延迟构建模型. 接口描述 ListView({ Key key, // 可滚动widget公共参数 Axis scrollD ...

  2. DTCC 2020 | 阿里云李飞飞:云原生分布式数据库与数据仓库系统点亮数据上云之路

    简介: 数据库将面临怎样的变革?云原生数据库与数据仓库有哪些独特优势?在日前的 DTCC 2020大会上,阿里巴巴集团副总裁.阿里云数据库产品事业部总裁.ACM杰出科学家李飞飞就<云原生分布式数 ...

  3. 【Linux】Linux介绍和安装 - 测试题

    第一部分测试题 Linux介绍和安装 测试题 做点练习题,巩固一下咯~ ~ _ 10 个选择题. 1.让我们选择开机时进哪个操作系统的软件叫什么? A. booter B. bootloader C. ...

  4. 【MySQL】MySQL知识图谱

    MySQL 文章目录 MySQL 表 锁 索引 连接管理 事务 日志系统 简单记录 极客时间 - MySQL实战45讲 MySQL知识图谱 表 表 引擎选择 编码问题 表空间管理 字段设计 备份和恢复 ...

  5. CSAPP:Lab0 -Docker搭建纯净Linux环境

    1. 安装docker 在mac-os下我们可以利用homebrew很容易的安装docker. brew install docker 当然去官网下载也很容易 Empowering App Devel ...

  6. Upload - Labs (下)

    Pass - 11: 1.查看源代码,发现进行了一次对后缀名替换成空格,因此考虑双写绕过, 2.上传成功, 关键代码: $is_upload = false; $msg = null; if (iss ...

  7. Upload - Labs (上)

    Pass - 01: 1.尝试上传一个php文件:aaa.php,发现只允许上传某些图片类型,用bp抓包,发现http请求都没通过burp就弹出了不允许上传的提示框,这表明验证点在前端,而不在服务端 ...

  8. 利用JavaUDPSocket+多线程模拟实现一个简单的聊天室程序

    对Socket的一点个人理解:Socket原意是指插座.家家户户都有五花八门的家用电器,但它们共用统一制式的插座.这样做的好处就是将所有家用电器的通电方式统一化,不需要大费周章地在墙壁上凿洞并专门接电 ...

  9. 前端面试之CSS权重问题!

    前端面试之CSS权重问题! 下面的权重按照从小到大来排列! 1.通用选择器(*) 2.元素(类型)选择器 权重1 3.类选择器 权重10 4.属性选择器 5.伪类 6.ID 选择器 权重100 7.内 ...

  10. windows 系统 MySQL_5.6.21安装教程

      1.双击安装文件 mysql_installer_community_V5.6.21.1_setup.1418020972.msi,等待安装界面出现,见下图: 2.勾选:I accept thel ...