Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds. In each round, Andrew and Jerry draw randomly without replacement from a jar containing n balls,
each labeled with a distinct positive integer. Without looking, they hand their balls to Harry, who awards the point to the player with the larger number and returns the balls to the jar. The
winner of the game is the one who wins at least two of the three rounds.

Andrew wins rounds 1 and 2 while Jerry wins round 3, so Andrew wins the game. However, Jerry is unhappy with this system, claiming that he will often lose the match despite having the higher overall total. What is the probability that the sum of the three balls
Jerry drew is strictly higher than the sum of the three balls Andrew drew?

Input

The first line of input contains a single integer n (2 ≤ n ≤ 2000)
— the number of balls in the jar.

The second line contains n integers ai (1 ≤ ai ≤ 5000)
— the number written on the ith ball. It is guaranteed that no two balls have the same number.

Output

Print a single real value — the probability that Jerry has a higher total, given that Andrew wins the first two rounds and Jerry wins the third. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b.
The checker program will consider your answer correct, if .

Examples
input
2
1 2
output
0.0000000000
input
3
1 2 10
output
0.0740740741
Note

In the first case, there are only two balls. In the first two rounds, Andrew must have drawn the 2 and Jerry must have drawn the 1,
and vice versa in the final round. Thus, Andrew's sum is 5 and Jerry's sum is 4,
so Jerry never has a higher total.

In the second case, each game could've had three outcomes — 10 - 2, 10 - 1,
or 2 - 1. Jerry has a higher total if and only if Andrew won 2 - 1 in
both of the first two rounds, and Jerry drew the 10 in the last round. This has probability .

题意:两个人在做游戏,一个袋子里有n个球,球上的数字大小都不相同,共进行三回合,每一回合两个人同时各自从袋子里拿出一个球,求前两个回合A拿出的球的数字大于B,但是三个回合加起来的数字的和B大于A的概率。

思路:我们可以先用cnt[i]记录一个局面中胜者和败者差值为i的取法数,再用cnt2[i]表示前两个局面胜者和败者差值的总和为i的方案数,然后统计cnt2的前缀和,那么符合题意的方案总数即为for(i=1;i<=5000;i++){tot+=cnt2[i]*cnt[i-1]};

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
ll cnt1[5005],cnt2[10050];
int a[2005]; int main()
{
int n,m,i,j;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
}
sort(a+1,a+1+n);
for(i=1;i<=n;i++){
for(j=1;j<i;j++){
cnt1[a[i]-a[j] ]++;
}
}
for(i=1;i<=5000;i++){
for(j=1;j<=5000;j++){
cnt2[i+j]+=cnt1[i]*cnt1[j];
}
}
for(i=1;i<=10000;i++){
cnt2[i]=cnt2[i]+cnt2[i-1];
}
ll tot=0;
for(i=1;i<=5000;i++){
tot+=cnt2[i-1]*cnt1[i];
}
double num=n*(n-1)/2;
printf("%.10f\n",(double)tot/num/num/num );
}
return 0;
}

codeforces626D . Jerry's Protest (概率)的更多相关文章

  1. codeforces626D . Jerry's Protest

    Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds ...

  2. Codeforces 626D Jerry's Protest(暴力枚举+概率)

    D. Jerry's Protest time limit per test:2 seconds memory limit per test:256 megabytes input:standard ...

  3. 8VC Venture Cup 2016 - Elimination Round D. Jerry's Protest 暴力

    D. Jerry's Protest 题目连接: http://www.codeforces.com/contest/626/problem/D Description Andrew and Jerr ...

  4. Codeforces 626D Jerry's Protest 「数学组合」「数学概率」

    题意: 一个袋子里装了n个球,每个球都有编号.甲乙二人从每次随机得从袋子里不放回的取出一个球,如果甲取出的球比乙取出的球编号大则甲胜,否则乙胜.保证球的编号xi各不相同.每轮比赛完了之后把取出的两球放 ...

  5. 数学(概率)CodeForces 626D:Jerry's Protest

    Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds ...

  6. CodeForces 626D Jerry's Protest

    计算前两盘A赢,最后一盘B赢的情况下,B获得的球的值总和大于A获得的球总和值的概率. 存储每一对球的差值有几个,然后处理一下前缀和,暴力枚举就好了...... #include<cstdio&g ...

  7. codeforce626D (概率)

    D. Jerry's Protest time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. 8VC Venture Cup 2016 - Elimination Round

    在家补补题   模拟 A - Robot Sequence #include <bits/stdc++.h> char str[202]; void move(int &x, in ...

  9. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

随机推荐

  1. Laya 踩坑日记-BitmapFont 不显示空格

    项目中有用到艺术字,美术通过 bmfont64 将字体导给我了,结果发现在应用上 空格不显示 如图: 今天去深究了一下这个问题,发现是底层没封装好,然后自己改了一下下面是改过的 BitmapFont ...

  2. Memcached repcached 高可用

    Memcached + repcached 高可用环境 repcached 就是一个让memcached的机器能够互为主从,前端可以加一台HAProxy,后端两台memcached互为主从后,写入任何 ...

  3. 【Sed】使用sed删除文件指定行的内容

    sed多看帮助文档,受益良多 sed -i '$d' filename 例如删除 /etc/profile的最后一行 cat -n /etc/profile ...    101  export PA ...

  4. 【Jboss】应用中缺少宋体怎么办

    环境jboss4.2.2 系统CentOS7.2 1.新搭建的环境,但是没有字符集,在windows上的电脑上复制了一份宋体,打成zip包 将zip包上传到服务器中,解压 2.在/usr/share/ ...

  5. 代码页(CodePage)列表

    代码页编号    国家地区或语言37                 IBM037    IBM EBCDIC (US-Canada)    437                 IBM437    ...

  6. REUSE_ALV_FIELDCATALOG_MERGE函数

    今天使用REUSE_ALV_FIELDCATALOG_MERGE函数,就是获取不到fieldcat, 搞了半天才发现,原来参数要全部大写才行!!小写字符就是获取不到,唉,悲哀...

  7. Git安装/VScode+Git+Github

    Git安装/VScode+Git+Github 1. 相关简介 git 版本控制工具,支持该工具的网站有Github.BitBucket.Gitorious.国内的OS China仓库.Csdn仓库等 ...

  8. 面试常问的ArrayQueue底层实现

    public class ArrayQueue<T> extends AbstractList<T>{ //定义必要的属性,容量.数组.头指针.尾指针 private int ...

  9. uni-app 开发随笔(踩坑记录)

    这里总结一些uni-app开发时我遇到的坑 uni-app获取元素高度及屏幕高度(uni-app不可使用document) uni.getSystemInfo({ success: function( ...

  10. Python数据模型与Python对象模型

    数据模型==对象模型 Python官方文档说法是"Python数据模型",大多数Python书籍作者说法是"Python对象模型",它们是一个意思,表示&quo ...