Problem Description
#define xhxj (Xin Hang senior sister(学姐)) 

If you do not know xhxj, then carefully reading the entire description is very important.

As the strongest fighting force in UESTC, xhxj grew up in Jintang, a border town of Chengdu.

Like many god cattles, xhxj has a legendary life: 

2010.04, had not yet begun to learn the algorithm, xhxj won the second prize in the university contest. And in this fall, xhxj got one gold medal and one silver medal of regional contest. In the next year's summer, xhxj was invited to Beijing to attend the
astar onsite. A few months later, xhxj got two gold medals and was also qualified for world's final. However, xhxj was defeated by zhymaoiing in the competition that determined who would go to the world's final(there is only one team for every university to
send to the world's final) .Now, xhxj is much more stronger than ever,and she will go to the dreaming country to compete in TCO final.

As you see, xhxj always keeps a short hair(reasons unknown), so she looks like a boy( I will not tell you she is actually a lovely girl), wearing yellow T-shirt. When she is not talking, her round face feels very lovely, attracting others to touch her face
gently。Unlike God Luo's, another UESTC god cattle who has cool and noble charm, xhxj is quite approachable, lively, clever. On the other hand,xhxj is very sensitive to the beautiful properties, "this problem has a very good properties",she always said that
after ACing a very hard problem. She often helps in finding solutions, even though she is not good at the problems of that type.

Xhxj loves many games such as,Dota, ocg, mahjong, Starcraft 2, Diablo 3.etc,if you can beat her in any game above, you will get her admire and become a god cattle. She is very concerned with her younger schoolfellows, if she saw someone on a DOTA platform,
she would say: "Why do not you go to improve your programming skill". When she receives sincere compliments from others, she would say modestly: "Please don’t flatter at me.(Please don't black)."As she will graduate after no more than one year, xhxj also wants
to fall in love. However, the man in her dreams has not yet appeared, so she now prefers girls.

Another hobby of xhxj is yy(speculation) some magical problems to discover the special properties. For example, when she see a number, she would think whether the digits of a number are strictly increasing. If you consider the number as a string and can get
a longest strictly increasing subsequence the length of which is equal to k, the power of this number is k.. It is very simple to determine a single number’s power, but is it also easy to solve this problem with the numbers within an interval? xhxj has a little
tired,she want a god cattle to help her solve this problem,the problem is: Determine how many numbers have the power value k in [L,R] in O(1)time.

For the first one to solve this problem,xhxj will upgrade 20 favorability rate。
 

Input
First a integer T(T<=10000),then T lines follow, every line has three positive integer L,R,K.(

0<L<=R<263-1 and 1<=K<=10).
 

Output
For each query, print "Case #t: ans" in a line, in which t is the number of the test case starting from 1 and ans is the answer.
 

Sample Input

1
123 321 2
 

Sample Output

Case #1: 139

题意:求区间L到R之间的数中满足数位的最长严格递增序列的长度恰好为K的数的个数。

思路:用dp[i][state][j]表示到第i位状态为state,最长上升序列的长度为k的方案数。那么只要模拟nlogn写法的最长上升子序列的求法就行了。这里这里记忆化的时候一定要写成dp[pos][stata][k],表示前pos位,状态为state的,最长上升子序列长为k的方案数这里如果写成dp[pos][state][len]时会出错,因为有多组样例,每一组的k的值不同,那么不同k下得出的dp[pos][state][len]所对应的意义也不同。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
ll n,m;
int k;
int wei[30];
ll dp[25][1<<12][12]; //当前为第pos位,状态为state,最长长度为k的方案数
int getnum(int state)
{
int tot=0;
while(state){
if(state&1)tot++;
state>>=1;
}
return tot;
}
int getstate(int state,int x)
{
int i,j;
for(i=x;i<=9;i++){
if((state&(1<<i))!=0 ){
return (state^(1<<i))|(1<<x);
}
}
return (state|(1<<x));
} ll dfs(int pos,int state,int lim,int zero) //zero表示最高位是不是放下了,即是否任然是前导0
{
int i,j;
if(pos==0){
if(getnum(state)==k){
return 1;
}
return 0;
}
if(lim==0 && dp[pos][state][k]!=-1){
return dp[pos][state][k];
}
int ed=lim?wei[pos]:9;
ll ans=0;
int state1,length1;
for(i=0;i<=ed;i++){
if(zero==1 && i==0){
state1=0;
}
else{
state1=getstate(state,i);
}
ans+=dfs(pos-1,state1,lim&&(i==ed),zero&&(i==0) );
}
if(lim==0){
dp[pos][state][k]=ans; //这里记忆化的时候一定要写成dp[pos][stata][k],表示前pos位,状态为state,这样算下去最长上升子序列长为k的方案数
//这里如果写成dp[pos][state][len]时会出错,因为有多组样例,每一组的k的值不同,那么不同k下得出的dp[pos][state][len]所对应的意义也不同。
}
return ans;
}
ll solve(ll x)
{
ll xx=x;
int i,j,tot=0;
while(xx){
wei[++tot]=xx%10;
xx/=10;
}
return dfs(tot,0,1,1); }
int main()
{
int i,j,T,cas=0;
memset(dp,-1,sizeof(dp));//这里要注意,dp的初始化放在最前面,这样可以少算重复的情况,节省时间
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%d",&m,&n,&k);
cas++;
printf("Case #%d: %I64d\n",cas,solve(n)-solve(m-1) );
}
return 0;
}

hdu4352 XHXJ's LIS (数位dp)的更多相关文章

  1. hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)

    #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the entire ...

  2. hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]

    统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$. 首先肯定是数位DP.然后考虑怎么做这个dp.如果把$k$记录到状态 ...

  3. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  4. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  5. HDU.4352.XHXJ's LIS(数位DP 状压 LIS)

    题目链接 \(Description\) 求\([l,r]\)中有多少个数,满足把这个数的每一位从高位到低位写下来,其LIS长度为\(k\). \(Solution\) 数位DP. 至于怎么求LIS, ...

  6. XHXJ's LIS(数位DP)

    XHXJ's LIS http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others)     ...

  7. HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)

    题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...

  8. $HDU$ 4352 ${XHXJ}'s LIS$ 数位$dp$

    正解:数位$dp$+状压$dp$ 解题报告: 传送门! 题意大概就是港,给定$[l,r]$,求区间内满足$LIS$长度为$k$的数的数量,其中$LIS$的定义并不要求连续$QwQ$ 思路还算有新意辣$ ...

  9. hdu 4352 XHXJ's LIS 数位DP+最长上升子序列

    题目描述 #define xhxj (Xin Hang senior sister(学姐))If you do not know xhxj, then carefully reading the en ...

随机推荐

  1. Linux学习笔记 | 常见错误之账户密码正确但是登录不进去系统

    前言: 笔者今日由于Linux版本的原因,需要Linux内核版本不能太高的系统,而日常使用的ubuntu系统不能满足需求,于是新建了一个虚拟机,选用的系统是Ubuntu16的,配置了一下午的各种依赖环 ...

  2. 【System】I/O密集型和CPU密集型工作负载之间有什么区别

    CPU密集型(CPU-bound) CPU密集型也叫计算密集型,指的是系统的硬盘.内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/ ...

  3. 【Linux】ABRT has detected 1 problem(s). For more info run: abrt-cli list --since 1548988705

    ------------------------------------------------------------------------------------------------- | ...

  4. 【一天一个知识点系列】- Http之状态码

    状态码 简介 HTTP 状态码负责表示客户端 HTTP 请求的返回结果. 标记服务器端的处理是否正常. 通知出现的错误等工作 作用及类别 作用:状态码告知从服务器端返回的请求结果 状态码的类别 注意: ...

  5. 面试官:你说说ReentrantLock和Synchronized区别

    大家好!又和大家见面了.为了避免面试尴尬,今天同比较通俗语言和大家聊下ReentrantLock和Synchronized区别! 使用方式 Synchronized可以修饰实例方法,静态方法,代码块. ...

  6. 记录list.remove()和list.pop()

    list.remove(obj):这个是移除列表中某个值的第一个匹配项 list.pop(index):这个是移除列表中下标为index的元素 当元素全是数字或者有数字时注意区分.

  7. day03 函数基本语法及特性 2. 参数与局部变量 3. 返回值 嵌套函数 4.递归 5.匿名函数 6.函数式编程介绍 7.高阶函数 8.内置函数

    本节内容 1. 函数基本语法及特性 2. 参数与局部变量 3. 返回值 嵌套函数 4.递归 5.匿名函数 6.函数式编程介绍 7.高阶函数 8.内置函数 温故知新 1. 集合 主要作用: 去重 关系测 ...

  8. 思考gRPC :为什么是HTTP/2

    Introducing gRPC Support with NGINX 1.13.10 - NGINX https://www.nginx.com/blog/nginx-1-13-10-grpc/ 思 ...

  9. SSL_ERROR_WANT_READ

    ``` 47757 2020/05/07 06:36:04 [debug] 19413#19413: *23421 event timer: 11, old: 15581551413, new: 15 ...

  10. By default, the connection will be closed if the proxied server does not transmit any data within 60 seconds.

    WebSocket proxying https://nginx.org/en/docs/http/websocket.html By default, the connection will be ...