01 on Tree

题目链接:luogu AT3957

题目大意

有一棵根为 \(1\) 的树,每个节点有个值 \(0\) 或 \(1\)。

然后每次你可以把一个没有父亲的点删除,然后把值放进一个数组里。

要你得出的数组逆序对尽可能少,要输出这个最小的逆序对个数。

思路

那我们会发现从根节点开始删会很麻烦,很难处理,那我们考虑反着来:从叶节点开始不断合并,向根节点上传答案。

那我们要先发现一件事,对于一个点 \(x\) 的一个子树 \(y\),它不管 \(y\) 里面怎么排列,里面产生了多少个逆序对,最终排列 \(x\) 里面的每个子树的时候,看的只是 \(y\) 里面有多少个 \(0\),多少个 \(1\),是不会管里面怎么排列的。

那我们就可以对于每个子树都看它怎么排列好。我们贪心一下。

首先,对于两个子树 \(i,j\),设它们 \(0\) 的数量为 \(num0_i,num0_j\),\(1\) 的数量为 \(num1_i,num1_j\)。

那如果 \(i\) 在 \(j\) 的前面,新增逆序对的个数就是 \(num1_i\times num0_j\)。如果在后面,就是 \(num1_j\times num0_i\)。

那假设 \(i\) 放前面比 \(j\) 放前面优,那就是 \(num1_i\times num0_j < num1_j\times num0_i\)。

那这个我们可以用堆来维护。

但是这是不能直接递归来搞的,我们要把每个点都看成独立,然后想父亲的方向合并。

那其实 \(num0,num1\) 记录的其实变成了这个点所在的连通块的 \(0,1\) 个数。

那显然上面的贪心在这里还是可以的。

那我们要维护 \(0,1\) 个数,自然要用并查集。

记得要判断当前点是否被删掉,因为当合并完之后,它父亲节点要删去,我们只要看 \(num0,num1\),就可以得知是否被合并。

还有一点就是 \(1\),也就是根节点是不用再合并的,因为没有父亲。

代码

#include<queue>
#include<cstdio> using namespace std; struct Teap {
int x, num_1, num_0;
};
bool operator < (Teap x, Teap y) {//用堆将点按贪心思想排序
return 1ll * x.num_0 * y.num_1 < 1ll * x.num_1 * y.num_0;
} int n, a[200001], father[200001];
int fa[200001], num[200001][2];
long long ans;
priority_queue <Teap> q; int find(int now) {//并查集
if (father[now] == now) return now;
return father[now] = find(father[now]);
} int main() {
scanf("%d", &n);
for (int i = 2; i <= n; i++) {
scanf("%d", &fa[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
num[i][a[i]]++; father[i] = i;
} for (int i = 2; i <= n; i++)
q.push((Teap){i, num[i][1], num[i][0]}); while (!q.empty()) {
Teap now = q.top();
q.pop(); int x = find(now.x);
if (num[x][0] != now.num_0 || num[x][1] != now.num_1)
continue;//这个点已近被删除 int y = find(fa[x]);
ans += 1ll * num[x][0] * num[y][1];//加上逆序对个数 num[y][0] += num[x][0];//这个子树所包含的0/1的个数增加
num[y][1] += num[x][1]; father[x] = y;//并查集连接 if (y != 1)//继续下去
q.push((Teap){y, num[y][1], num[y][0]});
} printf("%lld", ans); return 0;
}

【luogu AT3957】[AGC023F] 01 on Tree的更多相关文章

  1. 【Luogu P2515】软件安装

    Luogu P2515 这道题的题面与P2146有点像.一些不同地方就是P2146是无环的,这题是有环的. 很显然,如果有几个软件的依赖关系形成环,那么这几个软件就可以被看成是一个大软件,其价值和空间 ...

  2. 【Luogu 3275】[SCOI2011]糖果

    Luogu P3275 显然是一道经典的差分约束系统 相关知识可以查看:[Luogu 1993]差分约束系统问题--小K的农场 值得注意的是这题使用最长路更合适,因为每一个人都要取得至少一个糖果.在添 ...

  3. 【Luogu P3388】割点模板

    Luogu P3388 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多,就称这个点集为割点集合. 如果某个割点集合只含有一个顶点X(也即{X ...

  4. 【Luogu P1164】小A点菜

    题目原链接: Luogu 小A点菜 [解题思路] 常规的0-1背包,不过是求装满整个背包的方案数,只要把0-1背包的状态转移方程稍微改一下就行.因为要求方案数,那么把方程中的max换成sum就行. [ ...

  5. 【30.36%】【codeforces 740D】Alyona and a tree

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  6. 【Luogu P1981】表达式求值

    点我进入原题Luogu P1981 [解题思路] 仔细分析题目,这就是一道模拟题…… 直接按照符号读入全部的数字,先算乘法,最后把全部数加起来就是结果了 记得要%10000取最后四位 [参考程序] # ...

  7. 【Luogu P2563】【集训Day 4 动态规划】质数和分解

    题目链接:Luogu P2563 质数和分解(prime) [问题描述] 任何大于 1 的自然数 N,都可以写成若干个大于等于2且小于等于 N 的质数之和表达式(包括只有一个数构成的和表达式的情况), ...

  8. 【Luogu P1090】合并果子

    Luogu P1090 [解题思路] 刚看到这题的时候,第一反应就是每次取两个最小,然后重新排序,再取最小.但是这样会TLE. 既然找最小的,那就可以利用单调队列了.显然输入的数据是不具有单调性的,但 ...

  9. 【POJ 2823】【Luogu P1886】Sliding Window 滑动窗口

    POJ 2823 Luogu P1886 [解题思路] 这是一个单调队列算法的经典题目,几乎学习单调队列的人都接触过这题. 利用单调队列算法求出每一个固定区间内的最(大/小)值. 以下以最大值为例: ...

随机推荐

  1. 【Java】面向对象 - 封装

    继承 封装 多态 重新搞一波 复习巩固 简单记录 慕课网 imooc Java 零基础入门-Java面向对象-Java封装 封装 封装是什么? 将类的某些信息隐藏在类内部,不允许外部程序直接访问 通过 ...

  2. APP测试之Monkey测试

    一.简介 1.什么是Monkey测试? Monkey testing,也有人叫做搞怪测试.就是用一些稀奇古怪的操作方式去测试被测试系统,以测试系统的稳定性.Monkeytest,一般指这样的测试活动, ...

  3. Linux设置开机自动挂载镜像文件

    1.将文件上传到服务器上(本例上传到/Data/software下) 2.挂载 mount -o loop /Data/software/rhel-server-7.6-x86_64-dvd.iso ...

  4. logicaldisk本地磁盘管理

    在网上搜了很多,但是基本都是一样的,差不多都是互相转载摘抄,就那么几个寥寥无几的例子,所以我冒了很大的风险,自己经过多次的测试,对这个命令有了一些新的认识!拿出来分享一下! LOGICALDISK   ...

  5. 源代码增强的一点说明(souce code enhance )

    souce code enhance 分为显式和隐式两种. 下面以显式创建为例子: 1.在ABAP编辑器中, 打开想要编辑的程序,切换到可编辑模式 2.在源代码中的指定位置右键,弹出菜单,选择 Enh ...

  6. 输入5V,输出5V限流芯片,4A限流,短路保护

    USB限流芯片,5V输入,输出5V电压,限流值可以通过外围电阻进行调节,PWCHIP产品中可在限流范围0.4A-4.8A,并具有过压关闭保护功能. 过压关闭保护: 如芯片:PW1555,USB我们一半 ...

  7. Linux更换软件源

    1. Ubuntu16.04 sudo cp /etc/apt/sources.list /etc/apt/sources_origin.list # 备份 sudo gedit /etc/apt/s ...

  8. Linux中LPC、RPC、IPC的区别

    其实这玩意儿就是纸老虎,将英文缩写翻译为中文就明白一半了. IPC:(Inter Process Communication )跨进程通信 这个概念泛指进程之间任何形式的通信行为,是个可以拿来到处套的 ...

  9. 写给 Poppy 的 MySQL 速查表

    昨天 Poppy 问我是不是应该学一些网页开发的东西, 我的回答是这样的: 今天花了点时间汇总了一些 MySQL 简单的命令. ======== 正文分割线 ======== 有哪些常见的数据库: O ...

  10. protoc-gen-validate (PGV)

    https://github.com/envoyproxy/protoc-gen-validate This project is currently in alpha. The API should ...