【BZOJ4398】福慧双修 题解(建图优化)
题目大意:给定一张$n$个点$m$条边的无向图,每条边两个方向的权值不一定相同。问从$1$出发不重复走一条边回到$1$的最短路径。
-------------------
暴力不太会。大概是$dfs$?复杂度不得上天……
正解:对于那些端点不是$1$的边,因为要走最短路,所以这些边只会走一次,所以对答案是没有影响的。考虑端点为$1$的边,我们进行“二进制分组”。每次按照二进制分为两组:入边和出边,然后跑最短路。路径长为$dis[edge[i].to]$加上入边权值。这样做能把所有情况包括进去,符合最优性质。
时间复杂度$O(n\log^2 n)$。
代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,vis[],dis[],tag[],ans=0x3f3f3f3f;
int head[],cnt=-;
struct edge
{
int next,to,dis;
}edge[];
struct node
{
int dis,pos;
bool operator < (const node &x) const
{
return x.dis<dis;
}
};
priority_queue<node> q;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void add(int from,int to,int dis)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
edge[cnt].dis=dis;
head[from]=cnt;
}
inline void dijkstra()
{
for(int i=;i<=n;i++) dis[i]=0x3f3f3f3f;
memset(vis,,sizeof(vis));
dis[]=;q.push((node){,});
while(!q.empty())
{
node tmp=q.top();q.pop();
int now=tmp.pos;
if (vis[now]) continue;
vis[now]=;
for (int i=head[now];i!=-;i=edge[i].next)
{
if (tag[i]==-) continue;
int to=edge[i].to;
if (dis[to]>dis[now]+edge[i].dis)
{
dis[to]=dis[now]+edge[i].dis;
if (!vis[to]) q.push((node){dis[to],to});
}
}
}
for (int i=head[];i!=-;i=edge[i].next)
if (tag[i]==-&&ans>dis[edge[i].to]+edge[i^].dis)
ans=dis[edge[i].to]+edge[i^].dis;
}
signed main()
{
n=read(),m=read();
memset(head,-,sizeof(head));
for (int i=;i<=m;i++)
{
int u=read(),v=read(),w1=read(),w2=read();
add(u,v,w1);add(v,u,w2);
}
for (int d=;d>=;d--)
{
for (int i=head[];i!=-;i=edge[i].next)
if((i>>d)&) tag[i]=,tag[i^]=-;
else tag[i]=-,tag[i^]=;
dijkstra();
for (int i=head[];i!=-;i=edge[i].next)
if ((i>>d)&) tag[i]=-,tag[i^]=;
else tag[i]=,tag[i^]=-;
dijkstra();
}
printf("%lld",(ans==0x3f3f3f3f)?-:ans);
return ;
}
【BZOJ4398】福慧双修 题解(建图优化)的更多相关文章
- 『The Captain 最短路建图优化』
The Captain(BZOJ 4152) Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小 ...
- BZOJ4383/LuoGuP3588 Pustynia/PUS 线段树建图优化
我会告诉你我看了很久很久才把题目看懂吗???怀疑智商了 原来他给的l,r还有k个数字都是下标... 比如给了一个样例 l, r, k, x1,x2,x3...xk,代表的是一个数组num[l]~num ...
- BZOJ4205卡牌配对——最大流+建图优化
题目描述 现在有一种卡牌游戏,每张卡牌上有三个属性值:A,B,C.把卡牌分为X,Y两类,分别有n1,n2张. 两张卡牌能够配对,当且仅当,存在至多一项属性值使得两张卡牌该项属性值互质,且两张卡牌类别不 ...
- 2018.08.29 NOIP模拟 table(拓扑排序+建图优化)
[描述] 给出一个表格,N 行 M 列,每个格子有一个整数,有些格子是空的.现在需要你 来做出一些调整,使得每行都是非降序的.这个调整只能是整列的移动. [输入] 第一行两个正整数 N 和 M. 接下 ...
- [Code+#4] 最短路 - 建图优化,最短路
最短路问题,然而对于任意\(i,j\),从\(i\)到\(j\)可以只花费\((i xor j) \cdot C\) 对每个点\(i\),只考虑到\(j\)满足\(j=i xor 2^k, j \le ...
- [HNOI2019]校园旅行(建图优化+bfs)
30分的O(m^2)做法应该比较容易想到:令f[i][j]表示i->j是否有解,然后把每个路径点数不超过2的有解状态(u,v)加入队列,然后弹出队列时,两点分别向两边搜索边,发现颜色一样时,再修 ...
- CodeForces 786B Legacy(线段树优化建图+最短路)
[题目链接] http://codeforces.com/problemset/problem/786/B [题目大意] 给出一些星球,现在有一些传送枪,可以从一个星球到另一个星球, 从一个星球到另一 ...
- [bzoj3218] a+b problem [最小割+数据结构优化建图]
题面 传送门 思路 最小割 我们首先忽略掉那个奇♂怪的限制,就有一个比较显然的最小割模型: 建立源点$S$和汇点$T$ 对于每个元素$i$建立一个点$i$,连边$<S,i,w[i]>$和$ ...
- Codeforces 587D - Duff in Mafia(2-SAT+前后缀优化建图)
Codeforces 题面传送门 & 洛谷题面传送门 2-SAT hot tea. 首先一眼二分答案,我们二分答案 \(mid\),那么问题转化为,是否存在一个所有边权都 \(\le mid\ ...
随机推荐
- input type=file过滤图片
<input type="file" accept=".png,.jpg,.jpeg,image/png,image/jpg,image/jpeg"> ...
- AcWing 93. 递归实现组合型枚举
AcWing 93. 递归实现组合型枚举 原题链接 从 1~n 这 n 个整数中随机选出 m 个,输出所有可能的选择方案. 输入格式 两个整数 n,m ,在同一行用空格隔开. 输出格式 按照从小到大的 ...
- hihoCoder 1050 树中的最长路 最详细的解题报告
题目来源:树中的最长路 解题思路:枚举每一个点作为转折点t,求出以t为根节点的子树中的‘最长路’以及与‘最长路’不重合的‘次长路’,用这两条路的长度之和去更新答案,最终的答案就是这棵树的最长路长度.只 ...
- less基础
less less的含义: less是一种动态样式语言,属于css预处理器的范畴,它扩展了css语言,增加了变量.Mixin.函数等特性,使css更易维护和扩展. 此外,less既可以在客户端上运行, ...
- Go的100天之旅-01初识Go
初识Go Go简介 Go的历史 上个世纪70年代Ken Thompson和Dennis M. Ritchie合作发明了UNIX操作系统同时Dennis M. Ritchie发明了C语言. 2007年的 ...
- Java批量入库Demo
java中往数据库批量插入数据Demo java代码: //入库数据是需要批量入库的List int len =入库数据.size(); //每次循环10条 int incremnet = 10; / ...
- Ethical Hacking - Web Penetration Testing(1)
How to hack a website? An application installed on a computer. ->web application pen-testing A co ...
- C++ 线性筛素数
今天要写一篇亲民的博客了,尽力帮助一下那些不会线性筛素数或者突然忘记线性筛素数的大佬. 众所周知,一个素数的倍数肯定不是素数(废话).所以我们可以找到一个方法,普通的筛法(其实不算筛,普通的是判断一个 ...
- PyQt5主界面
QMainWindow QMainWindow控件继承之QWidget控件,QWidget是所有控件的父类,主要提供界面的基本功能,包括边框.标题.工具栏.关闭按钮.最小化按钮以及最大化按钮等.子类中 ...
- 为什么Python适合初学者,一般要学习多久
为什么Python适合初学者?一般Python要学习多久?很多人都觉得,Python是一门很好学的语言,非常适合入门.但更多人都是不清楚具体原因的.那么,我们不如一起来看看Python为何更适合初学者 ...