传送门:QAQQAQ题面翻译

以后博客可能一直咕咕咕了。一些做题的思考可能会直接放在代码里而不是单独写博客,因为这样太浪费时间,只有一些比较新的题才会单独写博客

思路:对于这种构造可行解使得权值和恰好为某一值的题,一般都是先求出可以构造出来的最大和最小值,然后从某个极值按照一定方法进行连续修改

我们考虑每一条边对于答案的贡献:若边$E(u,v)$把数分成$U,V$两颗子树,则该边最大的贡献是$min(sz[U],sz[V])$,最小是$sz[U]\mod2$。

$min$太难处理,所以想一种办法把$min$去掉,通过重心的性质(每一个子树的$size$小于等于$\frac{n}{2}$),发现直接取重心就可以把$min$去掉了

所以就可以得到

$$minans=\sum_{i=1}^{n} [i \neq root]sz[i]\mod2$$

$$maxans=\sum_{i=1}^{n} [i \neq root]sz[i]$$

然后仔细想想会发现:答案有解的充要条件是$minans \leq k \leq maxans$且$(maxans-k)\mod2=0$

充分性:通过构造方法证明。

  每次取在$size$最大的子树中选取两个$lca$深度最大的点,因为本来两个点都是向字树外连的,现在自己相连,所以$\Delta =2*dep[lca]$,然后删掉那两个点

  容易发现这样构造是必定可以从$maxans$变成$minans$的,因为对于$sz[u]\mod2=0$的边,它底下肯定两两配对;对于$sz[u]\mod2=0$,这样的贪心会使得下面只有一个点向上经过它

  因为点数始终为偶数,所以从最大子树删掉两个点以后不会使得次大子树的$size$大于$\frac{n}{2}$,上面求$minans,maxans$的式子始终成立

  当最后一次$dep[lca]*2>rest$时,因为所有不是叶子节点的点都可以作$lca$,所以$dep$必定连续,即肯定能找到构造出刚好使得$rest=0$的方案。

  剩下的点按照$max$的方案,跨子树分别连就可以了

必要性:因为$\Delta =2*dep[lca]$,所以如果不是$k,maxans$不是同奇同偶,一定无解

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=120000;
typedef long long ll;
typedef pair<int,int> pii;
#define mk make_pair
int n; ll k; vector<int> v[N];
int sz[N],dep[N],fa[N],root; ll minn=N,maxn=0;
void dfs1(int u,int f)
{
sz[u]=1; int maxsz=0;
for(int i=0;i<(int)v[u].size();i++)
{
int to=v[u][i]; if(to==f) continue;
dfs1(to,u); sz[u]+=sz[to];
maxsz=max(maxsz,sz[to]);
}
if(minn>max(maxsz,n-sz[u])) minn=max(maxsz,n-sz[u]),root=u;
} int top[N],deg[N];
set<pii> S[N],R;//S维护子树中所有可能作为lca的点(即不是叶子)
void dfs(int u,int from)
{
sz[u]=1;
top[u]=from;
if(from&&(int)v[u].size()-1>=1) S[from].insert(mk(dep[u],u));
for(int i=0;i<(int)v[u].size();i++)
{
int to=v[u][i]; if(to==fa[u]) continue;
if(u==root) from=to; deg[u]++;
dep[to]=dep[u]+1; fa[to]=u;
dfs(to,from); sz[u]+=sz[to];
}
} void del(int x)
{
if(!--deg[fa[x]])
S[top[x]].erase(mk(dep[fa[x]],fa[x]));
} int vis[N];
vector<int> rem;
void dfs3(int u)
{
if(!vis[u]) rem.push_back(u);
for(int i=0;i<(int)v[u].size();i++)
{
int to=v[u][i]; if(to==fa[u]) continue;
dfs3(to);
}
} int main()
{
scanf("%d%lld",&n,&k);
for(int i=1;i<n;i++)
{
int x,y; scanf("%d%d",&x,&y);
v[x].push_back(y); v[y].push_back(x);
}
dfs1(1,-1); dep[root]=0; dfs(root,0);
minn=0,maxn=0;
for(int i=1;i<=n;i++)
if(i!=root) maxn+=sz[i], minn+=sz[i]%2;
if(k>maxn||k<minn||(maxn-k)&1) {puts("NO"); return 0;}
puts("YES");
for(int i=0;i<v[root].size();i++)
{
int to=v[root][i];
if(sz[to]>1) R.insert(mk(sz[to],to));
}
ll rest=maxn-k;
while(rest)
{
int now=R.rbegin()->second; R.erase(--R.end());
int pos=S[now].rbegin()->second;
if(2*dep[pos]>rest)
{
rest/=2;
pos=S[now].lower_bound(mk(rest,0))->second;
vector<int> V; V.clear();
for(int i=0;i<(int)v[pos].size();i++)
{
int to=v[pos][i];
if(to==fa[pos]||vis[to]) continue;
V.push_back(to);
}
if((int)V.size()<2) V.push_back(pos);
printf("%d %d\n",V[0],V[1]); vis[V[0]]=1; vis[V[1]]=1;
rest-=dep[pos];
break;
}
else
{
vector<int> V; V.clear();
for(int i=0;i<(int)v[pos].size();i++)
{
int to=v[pos][i];
if(to==fa[pos]||vis[to]) continue;
V.push_back(to);
}
if((int)V.size()<2) V.push_back(pos); rest-=dep[pos]*2;
printf("%d %d\n",V[0],V[1]); vis[V[0]]=1; vis[V[1]]=1;
del(V[0]); del(V[1]);
}
sz[now]-=2;
if(sz[now]>1) R.insert(mk(sz[now],now));
}
dfs3(root);
int T=(int)rem.size()/2;
for(int i=0;i<T;i++) printf("%d %d\n",rem[i],rem[i+T]);
return 0;
}

CF1396E——Distance Matching的更多相关文章

  1. [cf1396E]Distance Matching

    根据$dis(x,y)=d[x]+d[y]-2d[lca(x,y)]$,由于所有点都出现了1次,距离即$\sum_{i=1}^{n}d_{i}-2\sum d[lca(x,y)]$(以下假设根深度为0 ...

  2. [atARC087F]Squirrel Migration

    对这棵树重心情况分类讨论: 1.若这棵树存在两个重心,分别记作$x$和$y$,如果将$(x,y)$断开,两棵子树大小都相同(都为$\frac{n}{2}$),此时$p_{i}$与$i$必然不同属于一个 ...

  3. world.construct(me);

    目录 0 引言 0.1 所谓构造题 0.2 重点是动机 (motivation) 1 实践出真知 1.1 「CSP-S 2021」「洛谷 P7915」回文 1.1.1 题目大意 1.1.2 解题过程 ...

  4. 最喜欢的算法(们) - Levenshtein distance

    String Matching: Levenshtein distance Purpose: to use as little effort to convert one string into th ...

  5. Scipy教程 - 距离计算库scipy.spatial.distance

    http://blog.csdn.net/pipisorry/article/details/48814183 在scipy.spatial中最重要的模块应该就是距离计算模块distance了. fr ...

  6. Direct Shot Correspondence Matching

    一篇BMVC18的论文,关于semantic keypoints matching.dense matching的工作,感觉比纯patch matching有意思,记录一下. 1. 摘要 提出一种针对 ...

  7. Matching Networks for One Shot Learning

    1. Introduction In this work, inspired by metric learning based on deep neural features and memory a ...

  8. Hausdorff Distance(豪斯多夫距离)

    Hausdorff Distance(豪斯多夫距离) 参考博客:http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/ma ...

  9. Minimum edit distance(levenshtein distance)(最小编辑距离)初探

    最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离.是指两个字串之间,由一个转成还有一个所需的最少编辑操作次数.许可的编辑操作包含将一个字符替换成还有一个字符. ...

随机推荐

  1. JAVA运行环境 和 Java Applet的运行环境 的区别

    Java小程序,也就是Java Applet,可以在Web浏览器中运行.Java Applet必须以<applet>脚本的形式嵌入到HTML页面中,才能在web浏览器中运行. 之前总以为本 ...

  2. 074 01 Android 零基础入门 01 Java基础语法 09 综合案例-数组移位 06 综合案例-数组移位-主方法功能3的实现

    074 01 Android 零基础入门 01 Java基础语法 09 综合案例-数组移位 06 综合案例-数组移位-主方法功能3的实现 本文知识点:综合案例-数组移位-主方法功能3的实现 说明:因为 ...

  3. JavaFX ComboBox的选中事项

    参考1:https://blog.csdn.net/mexel310/article/details/37909205 参考2:https://blog.csdn.net/maosijunzi/art ...

  4. CF149D Coloring Brackets

    CF149D Coloring Brackets Link 题面: 给出一个配对的括号序列(如"\((())()\)"."\(()\)"等, "\() ...

  5. 浅谈 Java集合

    Java 集合 集合是对象的容器,定义了多个对象进行操作的常用方法,可实现数组的功能. Java集合类库所处位置:java.util.*. 与现代的数据结构类库的常见做法一样,Java集合类库也将接口 ...

  6. Vue.js 学习笔记之四:Vue 组件基础

    到目前为止,这个系列的笔记所展示的都是一些极为简单的单页面 Web 应用程序,并且页面上通常只有几个简单的交互元素.但在实际生产环境中,Web 应用程序的用户界面往往是由多个复杂的页面共同组成的.这时 ...

  7. 如何从0到1的构建一款Java数据生成器-第一章

    前提 某天晚上老夫在神游时,想起白天公司同事说起的问题,这老表抱怨使用mysql生成大批的随机测试数据太过麻烦,问大家有没有好的工具推荐,老夫对这种事情当然不关心,毕竟我也不知道. 秉承着不懂就要问, ...

  8. linux学习(一)--启动文件bootsect.s

     这是linux由BIOS加载后执行的第一段的启动程序代码,即文件 boot/bootsect.s  首先附图,简单介绍一下从开机加电到第一段linux代码执行的简要过程 1 .globl begte ...

  9. linux(centos8):用systemctl管理war包形式的jenkins(java 14 / jenkins 2.257)

    一,如何安装jenkins? 参见: https://www.cnblogs.com/architectforest/p/13685904.html 说明:刘宏缔的架构森林是一个专注架构的博客,地址: ...

  10. go ioutial 读取写入文件

    package main import ( "fmt" "io/ioutil" "os" ) func main() { // 读取文件 / ...