[Luogu P1119] 灾后重建 (floyd)
题面
传送门:https://www.luogu.org/problemnew/show/P1119
Solution
这题的思想很巧妙.
首先,我们可以考虑一下最暴力的做法,对每个时刻的所有点都求一遍单元最短路
因为最多只有200个时刻,时间复杂度为O(n^3log(n+m))) (堆优化的迪杰斯特拉)
显然对于n=200,并过不了
我们可有进一步分析
这一题,我们堆优化的迪杰斯特拉慢在每加入一个点,我们每一次都得对全图彻彻底底做一轮松弛
那换个角度考虑,如果我只松弛经过新加入的点的点对呢?
没错,就得用Floyd了.
因为Floyd本质就是一个DP,给了我们极大的魔改的空间
考虑到Floyd最外层循环就是枚举加入的点,我们就可以只枚举里面那两层枚举点对的循环.
也就是说我们只用考虑它有可能松弛到的点.
当然,在此之前,我们得先把这个点有关的边先连回去
然后先用两层循环(枚举中转点和起始点)来松弛终点为加入点的路径
接下来用刚刚说的两层循环来松弛经过新加入点路径就好
时间复杂度O(n^3)
然后就OjbK了
具体请看代码
Code
- //Luogu P1119 灾后重建
- //May,28th,2018
- //巧妙的floyed松弛
- #include<iostream>
- #include<cstdio>
- #include<cstring>
- using namespace std;
- const int N=200+10;
- long long read()
- {
- long long x=0,f=1; char c=getchar();
- while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
- while(isdigit(c)){x=x*10+c-'0';c=getchar();}
- return x*f;
- }
- int n,m,T[N],dis[N][N],e[N][N];
- int main()
- {
- n=read(),m=read();
- memset(T,0x3f,sizeof T);
- memset(dis,0x3f,sizeof dis);
- memset(e,0x3f,sizeof e);
- for(int i=0;i<n;i++)
- T[i]=read();
- for(int i=1;i<=m;i++)
- {
- int a=read(),b=read(),temp=read();
- e[a][b]=e[b][a]=temp;
- }
- for(int i=0;i<n;i++)
- e[i][i]=dis[i][i]=0;
- int Q=read(),to=0;
- for(int i=1;i<=Q;i++)
- {
- int x=read(),y=read(),t=read();
- while(T[to]<=t)
- {
- for(int j=0;T[j]<=t;j++)
- dis[to][j]=dis[j][to]=min(dis[to][j],e[to][j]);
- for(int j=0;T[j]<=t;j++)
- for(int k=0;T[k]<=t;k++)
- dis[to][k]=dis[k][to]=min(dis[k][to],dis[k][j]+dis[j][to]);
- for(int j=0;T[j]<=t;j++)
- for(int k=0;T[k]<=t;k++)
- dis[j][k]=min(dis[j][k],dis[j][to]+dis[to][k]);
- to++;
- }
- if(dis[x][y]==0x3f3f3f3f)
- printf("-1\n");
- else
- printf("%d\n",dis[x][y]);
- }
- return 0;
- }
正解(c++)
[Luogu P1119] 灾后重建 (floyd)的更多相关文章
- Luogu P1119 灾后重建 【floyd】By cellur925
题目传送门 这道题我们很容易想到对于每次询问,都跑一遍最短路(spfa,虽然他已经死了).只需在松弛的时候加入当前相关的点是否已经修好的判断,果不其然的TLE了4个点. (然鹅我第一次用spfa跑的时 ...
- 洛谷P1119 灾后重建 Floyd + 离线
https://www.luogu.org/problemnew/show/P1119 真是有故事的一题呢 半年前在宁夏做过一道类似的题,当时因为我的愚昧痛失了金牌. 要是现在去肯定稳稳的过,真是生不 ...
- 洛谷P1119灾后重建——Floyd
题目:https://www.luogu.org/problemnew/show/P1119 N很小,考虑用Floyd: 因为t已经排好序,所以逐个加点,Floyd更新即可: 这也给我们一个启发,如果 ...
- 洛谷P1119 灾后重建[Floyd]
题目背景 B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重建完成的村庄的公路才能 ...
- [Luogu P1119]灾后重建
这是一道考Floyd本质的题. 回忆一下Floyd的原理,三层循环,最外层循环枚举的是中转点,也就是用两点到中转点距离之和来更新最短路.然后来看下题目,重建时间是按照从小到大排序的,也就是说,当第i个 ...
- P1119 灾后重建 floyd
题目背景 BB地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重建完成的村庄的公路才 ...
- 洛谷 P1119 灾后重建 最短路+Floyd算法
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 总结 题面 题目链接 P1119 灾后重建 题目描述 B地区在地震过后,所有村 ...
- 洛谷——P1119 灾后重建
P1119 灾后重建 题目背景 B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重 ...
- 【Luogu】P1119灾后重建(Floyd)
题目链接 见题解: feilongz. 这里只放代码. #include<cstdio> #include<cstring> #include<cstdlib> # ...
随机推荐
- 分页查询对象Page
1 public class Page { 2 //当前页码 3 private Integer pageNo = 1; 4 //每页显示条数 5 private Integer pageSize = ...
- P4454 [CQOI2018]破解D-H协议
链接 这题并不难只是需要把题读懂 - By ShadderLeave 一句话题意 给定两个数 \(p\)和\(g\),有\(t\)组询问,每组询问给出\(A\)和\(B\) 其中 A = \(g^a ...
- (九) SpringBoot起飞之路-整合/集成Swagger 2 And 3
兴趣的朋友可以去了解一下其他几篇,你的赞就是对我最大的支持,感谢大家! (一) SpringBoot起飞之路-HelloWorld (二) SpringBoot起飞之路-入门原理分析 (三) Spri ...
- python软件安装-Windows
开发语言: 高级语言:Java.C.PHP.Go.ruby.c++ #字节码 低级语言:C.汇编 #机器码 语 ...
- vue超出8个字符,显示省略号
显示的数据
- iOS使用NSTextAttachment添加图片,图片模糊
最近在忙的项目中,需要处理富文本的相关内容,产品需求并不复杂,所以想着用TextKit处理,顺便学习一下,没想到直接掉坑.在此记录一下(都是血泪史),顺便为有需要的小伙伴提供参考. // Add th ...
- 租房数据分析,knn算法使用
import numpy as np import pandas as pd import matplotlib.pyplot as plt data = pd.read_excel('jiemo.x ...
- rabbitmq 交换机模式 -主题模式 topic
建立一个交换机 tpc 并且绑定了各自的路由到 Q1 Q2 <?php require_once "./vendor/autoload.php"; use PhpAmqpLi ...
- spring boot:用dynamic-datasource-spring-boot-starter配置druid多数据源(spring boot 2.3.3)
一,dynamic-datasource-spring-boot-starter的用途? 1,dynamic-datasource-spring-boot-starter 是一个基于springboo ...
- selenium基础--环境搭建
下载地址 Chrome点击下载chrome的webdriver: http://chromedriver.storage.googleapis.com/index.html不同的Chrome的版本对应 ...