LINK:成绩比较

大体思路不再赘述 这里只说几个我犯错的地方。

拉格朗日插值的时候 明明是n次多项式 我只带了n个值进去 导致一直GG.

拉格朗日插值的时候 由于是从1开始的 所以分母是\((i-1)!(n-1)\) 但是一直写成i! 心态炸裂。

还有就是 明明是分母 要求逆啊 直接乘 然后人没了。

最后是 关于答案的统计 由于被碾压的同学 每一科分数永远小于B神 所以 可以不考虑顺序的 将成绩分配给他们。

而 没有被碾压的同学 不可以直接分配 对于每一种方案来说 他们都是可以选择自由分配的 所以需要乘上自由分配的方案。

const int MAXN=110,INV=(mod+1)/2;
int n,m,K;
int U[MAXN],R[MAXN],f[MAXN],w[MAXN];
int fac[MAXN],inv[MAXN],NI[MAXN];
inline int C(int a,int b){return a<b?0:1ll*fac[a]*inv[b]%mod*inv[a-b]%mod;}
inline void add(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
b=(ll)b*b%mod;p=p>>1;
}
return cnt;
}
inline int lagrange(int n,int x,int op)
{
int ans=1,cnt=0;
if(op)rep(1,n,i)w[i]=(ksm(i,n-2)+w[i-1])%mod,ans=(ll)ans*(x-i)%mod;
else
{
fep(n-1,1,i)w[i]=((ll)w[i]-w[i-1]+mod)*i%mod;
w[n]=ksm(n,n-2);
rep(1,n,i)
{
add(w[i],w[i-1]);
ans=(ll)ans*(x-i)%mod;
}
}
if(x<=n)return w[x];
add(ans,mod);
rep(1,n,i)
{
int ww=(ll)ans*w[i]%mod;
int cc=(ll)inv[i-1]*inv[n-i]%mod*NI[i]%mod;
add(cnt,(ll)ww*cc%mod*(((n-i)&1)?mod-1:1)%mod);
}
return (cnt+mod)%mod;
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(m);get(K);K=n-K-1;
rep(1,m,i)get(U[i]);
rep(1,m,i)get(R[i]);
fac[0]=1;rep(1,n+1,i)fac[i]=(ll)fac[i-1]*i%mod,f[i]=1;
inv[n+1]=ksm(fac[n+1],mod-2);f[0]=1;
fep(n,0,i)inv[i]=(ll)inv[i+1]*(i+1)%mod;
int ans=1;
rep(1,m,i)
{
int ww=ksm(U[i],R[i]-1),op=1,cnt=0;
int ni=ksm(U[i],mod-2);
rep(1,n+1,j)NI[j]=ksm((U[i]-j+mod)%mod,mod-2);
rep(0,R[i]-1,k)
{
add(cnt,(ll)ww*op%mod*C(R[i]-1,k)%mod*lagrange(k+n-R[i]+2,U[i],!k)%mod);
ww=(ll)ww*ni%mod;op=mod-op;
}
ans=(ll)ans*cnt%mod;
rep(0,K,j)f[j]=(ll)f[j]*C(j,R[i]-1)%mod;
}
int cc=0;
rep(0,K,j)add(cc,(ll)C(K,j)*f[j]%mod*((K-j)&1?mod-1:1)%mod);
cc=(ll)cc*ans%mod*C(n-1,K)%mod;put(cc);
return 0;
}

P3270 [JLOI2016]成绩比较 容斥 数论 组合数学 拉格朗日插值的更多相关文章

  1. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  2. ●BZOJ 4559 [JLoi2016]成绩比较(容斥)

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 容斥,拉格朗日插值法. 结合网上的另一种方法,以及插值法,可以把本题做到 O( ...

  3. 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值

    [题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...

  4. 【BZOJ3294】放棋子(动态规划,容斥,组合数学)

    [BZOJ3294]放棋子(动态规划,容斥,组合数学) 题面 BZOJ 洛谷 题解 如果某一行某一列被某一种颜色给占了,那么在考虑其他行的时候可以直接把这些行和这些列给丢掉. 那么我们就可以写出一个\ ...

  5. 洛谷 P3270 - [JLOI2016]成绩比较(容斥原理+组合数学+拉格朗日插值)

    题面传送门 考虑容斥.我们记 \(a_i\) 为钦定 \(i\) 个人被 B 神碾压的方案数,如果我们已经求出了 \(a_i\) 那么一遍二项式反演即可求出答案,即 \(ans=\sum\limits ...

  6. BZOJ4559&P3270[JLoi2016]成绩比较

    题目描述 \(G\)系共有\(n\)位同学,\(M\)门必修课.这\(N\)位同学的编号为\(0\)到\(N-1\)的整数,其中\(B\)神的编号为\(0\)号.这\(M\)门必修课编号为\(0\)到 ...

  7. HDU 4135 Co-prime(容斥+数论)

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. BZOJ.4558.[JLOI2016]方(计数 容斥)

    BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...

  9. [BZOJ4558]:[JLoi2016]方(容斥+模拟)

    题目传送门 题目描述 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形上帝把我们派到了一个有N行M列的方格图上,图上一共有$(N+1)\times ...

随机推荐

  1. CSS3 transform详解,关于如何使用transform

    transform是css3的新特性之一.有了它可以box module变的更真实,这篇文章将全面介绍关于transform的使用. transform的作用 transform可以让元素应用 2D ...

  2. kibana限制用户只具备读图的权限

    假设需求 因为业务需要将日志系统收集到的信息进行图表化展示并交付到用户进行业务交流. 解决方案 这个需求看着似乎蛮简单的,如何解决? 1.对需要的数据进行过滤制作图表 2.对用户的权限限制为只读级别, ...

  3. 洛谷 P1131 [ZJOI2007]时态同步 树形DP

    题目描述 分析 我们从根节点开始搜索,搜索到叶子节点,回溯的时候进行维护 先维护节点的所有子节点到该节点最大边权(边权为叶子节点到同时到达它所需要时间) 然后维护答案,答案为最大边权减去所有到子节点的 ...

  4. 蒲公英 · JELLY技术周刊 Vol.13 跟 VSCode 学习如何开发大型 IDE 项目

    开发一个 IDE 很难么?这或许是件很难的事情,但当我们参考 VSCode 的技术构架来看,整个开发流程就会平滑顺畅很多,从内核开发.代码编辑器.视图结构到插件系统,在这整个技术构架中我们可以看到很多 ...

  5. jvm之栈、堆

    1. Java Virtual Machine ​ 人群当中,一位叫java的小伙子正向周围一众人群细数着自己取得的荣耀与辉煌.就在此时,c老头和c++老头缓步走来,看着被众人围住的java,c老头感 ...

  6. electron自定义最小化,最大化和关闭按钮

    Electron ipcRenderer 模块 ipcRenderer 模块是一个 EventEmitter 类的实例. 它提供了有限的方法,你可以从渲染进程向主进程发送同步或异步消息. 也可以收到主 ...

  7. (四)pandas的拼接操作

    pandas的拼接操作 #重点 pandas的拼接分为两种: 级联:pd.concat, pd.append 合并:pd.merge, pd.join 0. 回顾numpy的级联 import num ...

  8. scala 数据结构(十一):流 Stream、视图 View、线程安全的集合、并行集合

    1 流 Stream stream是一个集合.这个集合,可以用于存放无穷多个元素,但是这无穷个元素并不会一次性生产出来,而是需要用到多大的区间,就会动态的生产,末尾元素遵循lazy规则(即:要使用结果 ...

  9. Integer和Long部分源码分析

    Integer和Long的java中使用特别广泛,本人主要一下Integer.toString(int i)和Long.toString(long i)方法,其他方法都比较容易理解. Integer. ...

  10. Java图片验证码生成工具

    直接把以下代码拷贝使用: import javax.imageio.ImageIO;import java.awt.*;import java.awt.image.BufferedImage;impo ...