CF Contest 526 G. Spiders Evil Plan 长链剖分维护贪心
LINK:Spiders Evil Plan
非常巧妙的题目。
选出k条边使得这k条边的路径覆盖x且覆盖的边的边权和最大。
类似于桥那道题还是选择2k个点 覆盖x那么以x为根做长链剖分即可。
不过这样过不了。
还是考虑树的直径 可以发现覆盖x的那些点一定有一个是树的直径的两端之一。
所以我们直接对两条直径分别做这个东西然后想办法覆盖x.
如果y条边x还没被覆盖。
可以发现此时调整只有两种情况。
去掉长度最小的链然后把x所在的最长链加上去。
可以把x向上的被加入的链的下半部分去掉换成x.
由于边权不为1 所以无法直接跳长链。
考虑倍增即可。
const int MAXN=100010;
int n,len,Q;
int Log[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1],e[MAXN<<1];
inline void add(int x,int y,int z)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
e[len]=z;
}
struct wy
{
int d[MAXN],dis[MAXN],son[MAXN],mx[MAXN],ans[MAXN],c[MAXN];
int f[MAXN][20],cnt,rt,maxx;;
pii s[MAXN];
inline void dfs(int x,int fa,int op)
{
if(op)
{
f[x][0]=fa;mx[x]=dis[x];
d[x]=d[fa]+1;
rep(1,Log[d[x]],i)f[x][i]=f[f[x][i-1]][i-1];
}
if(!op&&dis[x]>dis[rt]){rt=x;}
go(x)
{
if(tn==fa)continue;
dis[tn]=dis[x]+e[i];
dfs(tn,x,op);
if(op&&mx[tn]>mx[x])
{
mx[x]=mx[tn];
son[x]=tn;
}
}
}
inline void dp(int x,int fa)
{
if(x==fa){s[++cnt]=mk(mx[x]-dis[f[x][0]],x);}
if(son[x])dp(son[x],fa);
go(x)if(tn!=f[x][0]&&tn!=son[x])dp(tn,tn);
}
inline void init(int x)
{
dfs(x,0,0);dis[rt]=0;
dfs(rt,0,1);dp(rt,rt);
sort(s+1,s+cnt+1);
for(int i=1,j=cnt;i<=cnt;++i,--j)
{
ans[i]=ans[i-1]+s[j].F;
for(int k=s[j].S;k;k=son[k])c[k]=i;
}
}
inline int calc1(int x,int y)//x所在长链替换y-1条长链
{
--y;
int w=x;
fep(Log[d[w]],0,i)if(c[f[w][i]]>y)w=f[w][i];
w=f[w][0];return ans[y]+mx[x]-dis[w];
}
inline int calc2(int x,int y)//向上的第一个长链的下半部分被替换掉.
{
int w=x;
fep(Log[d[x]],0,i)if(c[f[w][i]]>y)w=f[w][i];
w=f[w][0];return ans[y]+mx[x]-mx[w];
}
inline int query(int x,int y)
{
y=y*2-1;
if(y>=cnt)return ans[cnt];
if(c[x]<=y)return ans[y];
return max(calc1(x,y),calc2(x,y));
}
}t[2];
int main()
{
freopen("1.in","r",stdin);
get(n);get(Q);
rep(2,n,i)
{
int get(x),get(y),get(z);
add(x,y,z);add(y,x,z);
Log[i]=Log[i>>1]+1;
}
t[0].init(1);t[1].init(t[0].rt);
int ans=0;
rep(1,Q,i)
{
int x,y;
get(x);get(y);
x=(x+ans-1)%n+1;
y=(y+ans-1)%n+1;
ans=max(t[0].query(x,y),t[1].query(x,y));
put(ans);
}
return 0;
}
CF Contest 526 G. Spiders Evil Plan 长链剖分维护贪心的更多相关文章
- 【BZOJ3252】攻略(长链剖分,贪心)
[BZOJ3252]攻略(长链剖分,贪心) 题面 BZOJ 给定一棵树,每个点有点权,选定\(k\)个叶子,满足根到\(k\)个叶子的所有路径所覆盖的点权和最大. 题解 一个假装是对的贪心: 每次选择 ...
- bzoj 3252 攻略 长链剖分思想+贪心
攻略 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 889 Solved: 423[Submit][Status][Discuss] Descrip ...
- 7.28 NOI模拟赛 H2O 笛卡尔树 并查集 贪心 长链剖分
LINK:H2O 这场比赛打的稀烂 爆蛋. 只会暴力.感觉暴力细节比较多不想写. 其实这道题的难点就在于 采取什么样的策略放海绵猫. 知道了这一点才能确定每次放完海绵猫后的答案. 暴力枚举是不行的.而 ...
- 【CF1009F】Dominant Indices(长链剖分)
[CF1009F]Dominant Indices(长链剖分) 题面 洛谷 CF 翻译: 给定一棵\(n\)个点,以\(1\)号点为根的有根树. 对于每个点,回答在它子树中, 假设距离它为\(d\)的 ...
- Codeforces 526G - Spiders Evil Plan(长链剖分+直径+找性质)
Codeforces 题目传送门 & 洛谷题目传送门 %%%%% 这题也太神了吧 storz 57072 %%%%% 首先容易注意到我们选择的这 \(y\) 条路径的端点一定是叶子节点,否则我 ...
- 【CF526G】Spiders Evil Plan(贪心)
[CF526G]Spiders Evil Plan(贪心) 题面 洛谷 CodeForces 给定一棵树,要求选择\(y\)条链,满足被链覆盖的所有点在树上联通,且\(x\)必定在联通块中. 对于每次 ...
- [CF526G]Spiders Evil Plan
题目大意: 给出一个$n(n\leq 10^5)$个结点的带边权的树,$q(q\leq 10^5)$个询问,每次询问用$y$条路径覆盖整棵树且覆盖$x$至少一次,最多能覆盖的道路长度是多少? 强制在线 ...
- Codeforces 526G Spiders Evil Plan
由于做的时候看的是中文题面,第一遍写就被卡题意了:还以为每一条都要过x,那么就是一道动态树根选择2y个叶子的奇怪题目 交完0分gg,才发现题目看错了╮(╯▽╰)╭ the node containin ...
- 【Cf Edu #47 F】Dominant Indices(长链剖分)
要求每个点子树中节点最多的层数,一个通常的思路是树上启发式合并,对于每一个点,保留它的重儿子的贡献,暴力扫轻儿子将他们的贡献合并到重儿子里来. 参考重链剖分,由于一个点向上最多只有$log$条轻边,故 ...
随机推荐
- 20 个 CSS高级样式技巧汇总
使用技巧会让人变的越来越懒,没错,我就是想让你变懒.下面是我收集的CSS高级技巧,希望你懒出境界. 1. 黑白图像 这段代码会让你的彩色照片显示为黑白照片,是不是很酷? img.desaturate ...
- SQL基础随记3 范式 键
SQL基础随记3 范式 键 什么是范式?哈,自己设计会使用但是一问还真说不上来.遂将不太明晰的概念整体下 什么是 & 分类 范式(NF),一种规范,设计数据库模型时对关系内部各个属性之间的 ...
- web3.js支持SimpleChain跨链调用
SimpleChain的跨链协议已经对外开放很久了,很多应用也已经慢慢支持Simplechain的跨链.最近社区开发者web3.js中集成了Simplechain的跨链接口,开发者只需用npm安装包文 ...
- UVA 11383 Golden Tiger Claw 题解
题目 --> 题解 其实就是一个KM的板子 KM算法在进行中, 需要满足两个点的顶标值之和大于等于两点之间的边权, 所以进行一次KM即可. KM之后, 顶标之和就是最小的.因为如果不是最小的,就 ...
- 快讯:asuldb再立功,捕获史前大蛤
蛤蛤日报7月7日讯 (蛤媒体记者 申蛤 戌蛤) 昨日下午,asuldb成功于生物实验室捕获史前大蛤.据考证,史前大蛤是一种名为楠楠的生物.这种生物体型庞大,距今已有至少1e18年的寿命.这种大蛤行为古 ...
- 关于echarts中的饼状图的label文字显示过长的问题
label: { normal: { fontSize: 14, formatter(v) { let text = v.name let count = text.indexOf('¥') cons ...
- 机器学习03 /jieba详解
机器学习03 /jieba详解 目录 机器学习03 /jieba详解 1.引言 2.分词 2.1.jieba.cut && jieba.cut_for_search 2.2.jieba ...
- Flask 基础组件(一):基本使用
Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求进行预处理,然后 ...
- 微信小程序wx.switchTab跳转到tab页面后onLoad里面的方法不执行
相信大家在做小程序的时候启动页跳转到tab首页会用到switchTab 但是在跳转后发现页面模块不全,后面console.log()后发现是onLoad里面的方法不执行 解决这种问题的方法页有很多中, ...
- bzoj4459[Jsoi2013]丢番图
bzoj4459[Jsoi2013]丢番图 题意: 丢番图方程:1/x+1/y=1/n(x,y,n∈N+) ,给定n,求出关于n的丢番图方程有多少组解.n≤10^14. 题解: 通分得yn+xn=xy ...