LINK:Spiders Evil Plan

非常巧妙的题目。

选出k条边使得这k条边的路径覆盖x且覆盖的边的边权和最大。

类似于桥那道题还是选择2k个点 覆盖x那么以x为根做长链剖分即可。

不过这样过不了。

还是考虑树的直径 可以发现覆盖x的那些点一定有一个是树的直径的两端之一。

所以我们直接对两条直径分别做这个东西然后想办法覆盖x.

如果y条边x还没被覆盖。

可以发现此时调整只有两种情况。

  1. 去掉长度最小的链然后把x所在的最长链加上去。

  2. 可以把x向上的被加入的链的下半部分去掉换成x.

由于边权不为1 所以无法直接跳长链。

考虑倍增即可。

const int MAXN=100010;
int n,len,Q;
int Log[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1],e[MAXN<<1];
inline void add(int x,int y,int z)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
e[len]=z;
}
struct wy
{
int d[MAXN],dis[MAXN],son[MAXN],mx[MAXN],ans[MAXN],c[MAXN];
int f[MAXN][20],cnt,rt,maxx;;
pii s[MAXN];
inline void dfs(int x,int fa,int op)
{
if(op)
{
f[x][0]=fa;mx[x]=dis[x];
d[x]=d[fa]+1;
rep(1,Log[d[x]],i)f[x][i]=f[f[x][i-1]][i-1];
}
if(!op&&dis[x]>dis[rt]){rt=x;}
go(x)
{
if(tn==fa)continue;
dis[tn]=dis[x]+e[i];
dfs(tn,x,op);
if(op&&mx[tn]>mx[x])
{
mx[x]=mx[tn];
son[x]=tn;
}
}
}
inline void dp(int x,int fa)
{
if(x==fa){s[++cnt]=mk(mx[x]-dis[f[x][0]],x);}
if(son[x])dp(son[x],fa);
go(x)if(tn!=f[x][0]&&tn!=son[x])dp(tn,tn);
}
inline void init(int x)
{
dfs(x,0,0);dis[rt]=0;
dfs(rt,0,1);dp(rt,rt);
sort(s+1,s+cnt+1);
for(int i=1,j=cnt;i<=cnt;++i,--j)
{
ans[i]=ans[i-1]+s[j].F;
for(int k=s[j].S;k;k=son[k])c[k]=i;
}
}
inline int calc1(int x,int y)//x所在长链替换y-1条长链
{
--y;
int w=x;
fep(Log[d[w]],0,i)if(c[f[w][i]]>y)w=f[w][i];
w=f[w][0];return ans[y]+mx[x]-dis[w];
}
inline int calc2(int x,int y)//向上的第一个长链的下半部分被替换掉.
{
int w=x;
fep(Log[d[x]],0,i)if(c[f[w][i]]>y)w=f[w][i];
w=f[w][0];return ans[y]+mx[x]-mx[w];
}
inline int query(int x,int y)
{
y=y*2-1;
if(y>=cnt)return ans[cnt];
if(c[x]<=y)return ans[y];
return max(calc1(x,y),calc2(x,y));
} }t[2];
int main()
{
freopen("1.in","r",stdin);
get(n);get(Q);
rep(2,n,i)
{
int get(x),get(y),get(z);
add(x,y,z);add(y,x,z);
Log[i]=Log[i>>1]+1;
}
t[0].init(1);t[1].init(t[0].rt);
int ans=0;
rep(1,Q,i)
{
int x,y;
get(x);get(y);
x=(x+ans-1)%n+1;
y=(y+ans-1)%n+1;
ans=max(t[0].query(x,y),t[1].query(x,y));
put(ans);
}
return 0;
}

CF Contest 526 G. Spiders Evil Plan 长链剖分维护贪心的更多相关文章

  1. 【BZOJ3252】攻略(长链剖分,贪心)

    [BZOJ3252]攻略(长链剖分,贪心) 题面 BZOJ 给定一棵树,每个点有点权,选定\(k\)个叶子,满足根到\(k\)个叶子的所有路径所覆盖的点权和最大. 题解 一个假装是对的贪心: 每次选择 ...

  2. bzoj 3252 攻略 长链剖分思想+贪心

    攻略 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 889  Solved: 423[Submit][Status][Discuss] Descrip ...

  3. 7.28 NOI模拟赛 H2O 笛卡尔树 并查集 贪心 长链剖分

    LINK:H2O 这场比赛打的稀烂 爆蛋. 只会暴力.感觉暴力细节比较多不想写. 其实这道题的难点就在于 采取什么样的策略放海绵猫. 知道了这一点才能确定每次放完海绵猫后的答案. 暴力枚举是不行的.而 ...

  4. 【CF1009F】Dominant Indices(长链剖分)

    [CF1009F]Dominant Indices(长链剖分) 题面 洛谷 CF 翻译: 给定一棵\(n\)个点,以\(1\)号点为根的有根树. 对于每个点,回答在它子树中, 假设距离它为\(d\)的 ...

  5. Codeforces 526G - Spiders Evil Plan(长链剖分+直径+找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 %%%%% 这题也太神了吧 storz 57072 %%%%% 首先容易注意到我们选择的这 \(y\) 条路径的端点一定是叶子节点,否则我 ...

  6. 【CF526G】Spiders Evil Plan(贪心)

    [CF526G]Spiders Evil Plan(贪心) 题面 洛谷 CodeForces 给定一棵树,要求选择\(y\)条链,满足被链覆盖的所有点在树上联通,且\(x\)必定在联通块中. 对于每次 ...

  7. [CF526G]Spiders Evil Plan

    题目大意: 给出一个$n(n\leq 10^5)$个结点的带边权的树,$q(q\leq 10^5)$个询问,每次询问用$y$条路径覆盖整棵树且覆盖$x$至少一次,最多能覆盖的道路长度是多少? 强制在线 ...

  8. Codeforces 526G Spiders Evil Plan

    由于做的时候看的是中文题面,第一遍写就被卡题意了:还以为每一条都要过x,那么就是一道动态树根选择2y个叶子的奇怪题目 交完0分gg,才发现题目看错了╮(╯▽╰)╭ the node containin ...

  9. 【Cf Edu #47 F】Dominant Indices(长链剖分)

    要求每个点子树中节点最多的层数,一个通常的思路是树上启发式合并,对于每一个点,保留它的重儿子的贡献,暴力扫轻儿子将他们的贡献合并到重儿子里来. 参考重链剖分,由于一个点向上最多只有$log$条轻边,故 ...

随机推荐

  1. 数据库基础02-MYSQL的事务

    Mysql的事务 1.基本概念      事务本质是一组SQL操作,事务中的语句要么全部执行成功,或者全部执行失败. 2.如何保证一个事务:四个特性(ACID) 原子性 (Automic)       ...

  2. mysql修改密码的三种方式

  3. 已知如下代码,如何修改才能让图片宽度为 300px ?注意下面代码不可修改。

    <img src="1.jpg" style="width:480px!important;”> 总结: max-width:300px transform: ...

  4. 循序渐进VUE+Element 前端应用开发(16)--- 组织机构和角色管理模块的处理

    在前面随笔<循序渐进VUE+Element 前端应用开发(15)--- 用户管理模块的处理>中介绍了用户管理模块的内容,包括用户列表的展示,各种查看.编辑.新增对话框的界面处理和后台数据处 ...

  5. 使用QtCreator遇到的一些问题

    0. 背景 最近在学习QtCreator(版本:4.8.1:编译器:MSVC 2017 64-bit),遇到了一些问题,特记录如下.( 1. 引用库 QtCreator可以直接包含Windows.h, ...

  6. web自动化测试实战之生成测试报告

    同志们,老铁们,继上篇文章 web自动化测试实战之批量执行测试用例 之后我们接着继续往下走,有人说我们运行了所有测试用例,控制台输入的结果,如果很多测试用例那也不能够清晰快速的知道多少用例通过率以及错 ...

  7. ResponseBodyAdvice如何处理返回值是字符串的问题

    项目中使用ResponseBodyAdvice同一封装返回格式,对于一般的类型都没有问题,但是处理字符串时,遇到了类型转换的问题,debug一步一步跟踪,原来是对于字符串的ContentType是“t ...

  8. 学习jvm(一)--java内存区域

    前言 通过学习深入理解java虚拟机的教程,以及自己在网上的查询的资料,做一个对jvm学习过程中的小总结. 本文章内容首先讲解java的内存分布区域,之后讲内存的分配原则以及内存的监控工具.再下来会着 ...

  9. 2Ants(独立,一个个判,弹性碰撞,想象)

    AntsDescriptionAn army of ants walk on a horizontal pole of length l cm, each with a constant speed ...

  10. Python网络数据采集PDF高清完整版免费下载|百度云盘

    百度云盘:Python网络数据采集PDF高清完整版免费下载 提取码:1vc5   内容简介 本书采用简洁强大的Python语言,介绍了网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导.第 ...