MySQL全面瓦解10:分组查询和聚合函数
概述
相信我们经常会遇到这样的场景:想要了解双十一天猫购买化妆品的人员中平均消费额度是多少(这可能有利于对商品价格区间的定位);或者不同年龄段的化妆品消费占比是多少(这可能有助于对商品备货量的预估)。
这个时候就要用到分组查询,分组查询的目的是为了把数据分成多个逻辑组(购买化妆品的人员是一个组,不同年龄段购买化妆品的人员也是组),并对每个组进行聚合计算的过程:。
分组查询的语法格式如下:
1 select cname, group_fun,... from tname [where condition]
2 group by group_expression [having group_condition];
说明一下:
1、group_fun 代表聚合函数,是指对分组的数据进行聚合计算的函数。
2、group_expression 代表分组表达式,允许多个,多个之间使用逗号隔开。
3、group_condition 分组之后,再对分组后的数据进行条件过滤的过程。
4、分组语法中,select后面出现的字段 要么是group by后面的字段,要么是聚合函数的列,其他类型会报异常,我们下面的内容中会详细说明。
说分组之前,先来看看聚合函数,聚合函数是分组查询语法格式中重要的一部分。我们经常需要汇总数据而不用把它们实际检索出来,所以MySQL提供了专门的函数。使用这些函数,可用于计算我们需要的数据,以便分析和生成报表。
聚合函数
聚合函数有以下几种。
函数 | 说明 |
AVG() | 返回指定字段的平均值 |
COUNT() | 返回查询结果行数 |
MAX() | 返回指定字段的最大值 |
MIN() | 返回指定字段的最小值 |
SUM() | 返回指定字段的求和值 |
AVG()函数
AVG()通过对表中行数计数并计算特定列值之和,求得该列的平均值。 AVG()可用来返回所有列的平均值,也可以用来返回特定列或行的平均值。
下面示例返回用户表中用户的平均年龄:
1 mysql> select * from user2;
2 +----+--------+------+----------+-----+
3 | id | name | age | address | sex |
4 +----+--------+------+----------+-----+
5 | 1 | brand | 21 | fuzhou | 1 |
6 | 2 | helen | 20 | quanzhou | 0 |
7 | 3 | sol | 21 | xiamen | 0 |
8 | 4 | weng | 33 | guizhou | 1 |
9 | 5 | selina | 25 | NULL | 0 |
10 | 6 | anny | 23 | shanghai | 0 |
11 | 7 | annd | 24 | shanghai | 1 |
12 | 8 | sunny | NULL | guizhou | 0 |
13 +----+--------+------+----------+-----+
14 8 rows in set
15
16 mysql> select avg(age) from user2;
17 +----------+
18 | avg(age) |
19 +----------+
20 | 23.8571 |
21 +----------+
22 1 row in set
注意点:
1、AVG()只能用来确定特定数值列的平均值 。
2、AVG()函数忽略列值为NULL的行,所以上图中age值累加之后是除以7,而不是除以8。
COUNT()函数
COUNT()函数进行计数。 可以用COUNT()确定表中符合条件的行的数目。
count 有 count(*)、count(具体字段)、count(常量) 三种方式来体现 下面 演示了count(*) 和 count(cname)的用法。
1 mysql> select * from user2;
2 +----+--------+------+----------+-----+
3 | id | name | age | address | sex |
4 +----+--------+------+----------+-----+
5 | 1 | brand | 21 | fuzhou | 1 |
6 | 2 | helen | 20 | quanzhou | 0 |
7 | 3 | sol | 21 | xiamen | 0 |
8 | 4 | weng | 33 | guizhou | 1 |
9 | 5 | selina | 25 | NULL | 0 |
10 | 6 | anny | 23 | shanghai | 0 |
11 | 7 | annd | 24 | shanghai | 1 |
12 | 8 | sunny | NULL | guizhou | 0 |
13 +----+--------+------+----------+-----+
14 8 rows in set
15
16 mysql> select count(*) from user2 where sex=0;
17 +----------+
18 | count(*) |
19 +----------+
20 | 5 |
21 +----------+
22 1 row in set
23
24 mysql> select count(age) from user2 where sex=0;
25 +------------+
26 | count(age) |
27 +------------+
28 | 4 |
29 +------------+
30 1 row in set
可以看到,都是取出女生的用户数量,count(*) 比 count(age) 多一个,那是因为age中包含null值。
所以:如果指定列名,则指定列的值为空的行被COUNT()函数忽略,但如果COUNT()函数中用的是星号( *),则不忽略。
关于count 可以看我写的另一篇,详细分析了几种count的使用和性能比较: SELECT COUNT 小结
MAX()和MIN()函数
MAX()返回指定列中的最大值,MIN()返回指定列中的最小值。
1 mysql> select * from user2;
2 +----+--------+------+----------+-----+
3 | id | name | age | address | sex |
4 +----+--------+------+----------+-----+
5 | 1 | brand | 21 | fuzhou | 1 |
6 | 2 | helen | 20 | quanzhou | 0 |
7 | 3 | sol | 21 | xiamen | 0 |
8 | 4 | weng | 33 | guizhou | 1 |
9 | 5 | selina | 25 | NULL | 0 |
10 | 6 | anny | 23 | shanghai | 0 |
11 | 7 | annd | 24 | shanghai | 1 |
12 | 8 | sunny | NULL | guizhou | 0 |
13 +----+--------+------+----------+-----+
14 8 rows in set
15
16 mysql> select max(age),min(age) from user2;
17 +----------+----------+
18 | max(age) | min(age) |
19 +----------+----------+
20 | 33 | 20 |
21 +----------+----------+
22 1 row in set
注意:同样的,MAX()、MIN()函数忽略列值为NULL的行。
SUM函数
SUM()用来返回指定列值的和(总计) ,下面返回了所有年龄的总和,同样的,忽略了null的值
1 mysql> select * from user2;
2 +----+--------+------+----------+-----+
3 | id | name | age | address | sex |
4 +----+--------+------+----------+-----+
5 | 1 | brand | 21 | fuzhou | 1 |
6 | 2 | helen | 20 | quanzhou | 0 |
7 | 3 | sol | 21 | xiamen | 0 |
8 | 4 | weng | 33 | guizhou | 1 |
9 | 5 | selina | 25 | NULL | 0 |
10 | 6 | anny | 23 | shanghai | 0 |
11 | 7 | annd | 24 | shanghai | 1 |
12 | 8 | sunny | NULL | guizhou | 0 |
13 +----+--------+------+----------+-----+
14 8 rows in set
15
16 mysql> select sum(age) from user2;
17 +----------+
18 | sum(age) |
19 +----------+
20 | 167 |
21 +----------+
22 1 row in set
分组查询
数据准备,假设我们有一个订货单表如下(记载用户的订单金额和下单时间):
1 mysql> select * from t_order;
2 +---------+-----+-------+--------+---------------------+------+
3 | orderid | uid | uname | amount | time | year |
4 +---------+-----+-------+--------+---------------------+------+
5 | 20 | 1 | brand | 91.23 | 2018-08-20 17:22:21 | 2018 |
6 | 21 | 1 | brand | 87.54 | 2019-07-16 09:21:30 | 2019 |
7 | 22 | 1 | brand | 166.88 | 2019-04-04 12:23:55 | 2019 |
8 | 23 | 2 | helyn | 93.73 | 2019-09-15 10:11:11 | 2019 |
9 | 24 | 2 | helyn | 102.32 | 2019-01-08 17:33:25 | 2019 |
10 | 25 | 2 | helyn | 106.06 | 2019-12-24 12:25:25 | 2019 |
11 | 26 | 2 | helyn | 73.42 | 2020-04-03 17:16:23 | 2020 |
12 | 27 | 3 | sol | 55.55 | 2019-08-05 19:16:23 | 2019 |
13 | 28 | 3 | sol | 69.96 | 2020-09-16 19:23:16 | 2020 |
14 | 29 | 4 | weng | 199.99 | 2020-06-08 19:55:06 | 2020 |
15 +---------+-----+-------+--------+---------------------+------+
16 10 rows in set
单字段分组
即对于某个字段进行分组,比如针对用户进行分组,输出他们的用户Id,订单数量和总额:
1 mysql> select uid,count(uid),sum(amount) from t_order group by uid;
2 +-----+------------+-------------+
3 | uid | count(uid) | sum(amount) |
4 +-----+------------+-------------+
5 | 1 | 3 | 345.65 |
6 | 2 | 4 | 375.53 |
7 | 3 | 2 | 125.51 |
8 | 4 | 1 | 199.99 |
9 +-----+------------+-------------+
10 4 rows in set
多字段分组
即对于多个字段进行分组,比如针对用户进行分组,再对他们不同年份的订单数据进行分组,输出订单数量和消费总额:
1 mysql> select uid,count(uid) as nums,sum(amount) as totalamount,year from t_order group by uid,year;
2 +-----+------+-------------+------+
3 | uid | nums | totalamount | year |
4 +-----+------+-------------+------+
5 | 1 | 1 | 91.23 | 2018 |
6 | 1 | 2 | 254.42 | 2019 |
7 | 2 | 3 | 302.11 | 2019 |
8 | 2 | 1 | 73.42 | 2020 |
9 | 3 | 1 | 55.55 | 2019 |
10 | 3 | 1 | 69.96 | 2020 |
11 | 4 | 1 | 199.99 | 2020 |
12 +-----+------+-------------+------+
13 7 rows in set
分组前的条件过滤:where
这个很简单,就是再分组(group by)之前通过where关键字进行条件过滤,取出我们需要的数据,假设我们只要列出2019年8月之后的数据,源数据只有6条合格的,有两条年份一样被分组的:
1 mysql> select uid,count(uid) as nums,sum(amount) as totalamount,year from t_order where time > '2019-08-01' group by uid,year;
2 +-----+------+-------------+------+
3 | uid | nums | totalamount | year |
4 +-----+------+-------------+------+
5 | 2 | 2 | 199.79 | 2019 |
6 | 2 | 1 | 73.42 | 2020 |
7 | 3 | 1 | 55.55 | 2019 |
8 | 3 | 1 | 69.96 | 2020 |
9 | 4 | 1 | 199.99 | 2020 |
10 +-----+------+-------------+------+
11 5 rows in set
分组后的条件过滤:having
有时候我们需要再分组之后再对数据进行过滤,这时候就需要使用having关键字进行数据过滤,再上述条件下,我们需要取出消费次数超过一次的数据:
1 mysql> select uid,count(uid) as nums,sum(amount) as totalamount,year from t_order where time > '2019-08-01' group by uid,year having nums>1;
2 +-----+------+-------------+------+
3 | uid | nums | totalamount | year |
4 +-----+------+-------------+------+
5 | 2 | 2 | 199.79 | 2019 |
6 +-----+------+-------------+------+
7 1 row in set
这边需要注意区分where和having:
where是在分组(聚合)前对记录进行筛选,而having是在分组结束后的结果里筛选,最后返回过滤后的结果。
可以把having理解为两级查询,即含having的查询操作先获得不含having子句时的sql查询结果表,然后在这个结果表上使用having条件筛选出符合的记录,最后返回这些记录,因此,having后是可以跟聚合函数的,并且这个聚集函数不必与select后面的聚集函数相同。
分组后的排序处理
order条件接在group by后面,也就是统计出每个用户的消费总额和消费次数后,对用户的消费总额进行降序排序的过程。
1 mysql> select uid,count(uid) as nums,sum(amount) as totalamount from t_order group by uid;
2 +-----+------+-------------+
3 | uid | nums | totalamount |
4 +-----+------+-------------+
5 | 1 | 3 | 345.65 |
6 | 2 | 4 | 375.53 |
7 | 3 | 2 | 125.51 |
8 | 4 | 1 | 199.99 |
9 +-----+------+-------------+
10 4 rows in set
11
12 mysql> select uid,count(uid) as nums,sum(amount) as totalamount from t_order group by uid order by totalamount desc;
13 +-----+------+-------------+
14 | uid | nums | totalamount |
15 +-----+------+-------------+
16 | 2 | 4 | 375.53 |
17 | 1 | 3 | 345.65 |
18 | 4 | 1 | 199.99 |
19 | 3 | 2 | 125.51 |
20 +-----+------+-------------+
21 4 rows in set
分组后的limit 限制
limit限制关键字一般放在语句的最末尾,比如基于我们上面的搜索,我们再limit 1,只取出消费额最高的那条,其他跳过。
1 mysql> select uid,count(uid) as nums,sum(amount) as totalamount from t_order group by uid order by totalamount desc limit 1;
2 +-----+------+-------------+
3 | uid | nums | totalamount |
4 +-----+------+-------------+
5 | 2 | 4 | 375.53 |
6 +-----+------+-------------+
7 1 row in set
关键字的执行顺序
我们看到上面那我们用了 where、group by、having、order by、limit这些关键字,如果一起使用,他们是有先后顺序,顺序错了会导致异常,语法格式如下:
1 select cname from tname
2 where [原表查询条件]
3 group by [分组表达式]
4 having [分组过滤条件]
5 order by [排序条件]
6 limit [offset,] count;
1 mysql> select uid,count(uid) as nums,sum(amount) as totalamount from t_order where time > '2019-08-01' group by uid having totalamount>100 order by totalamount desc limit 1;
2 +-----+------+-------------+
3 | uid | nums | totalamount |
4 +-----+------+-------------+
5 | 2 | 3 | 273.21 |
6 +-----+------+-------------+
7 1 row in set
总结
1、分组语法中,select后面出现的字段 要么是group by后面的字段,要么是聚合函数的列,其他类型会报异常:可以自己试试。
2、分组关键字的执行顺序:where、group by、having、order by、limit,顺序不能调换,否则会报异常:可以自己试试。
MySQL全面瓦解10:分组查询和聚合函数的更多相关文章
- MySQL 05章_模糊查询和聚合函数
在之前的查询都需要对查询的关机中进行“精确”.“完整”完整的输入才能查询相应的结果, 但在实际开发过程中,通常需要考虑用户可能不知道“精确”.“完整”的关键字, 那么就需要提供一种不太严格的查询方式, ...
- MySQL-快速入门(5)数据查询-常用关键字、分组查询、聚合函数
1.in关键字.in的效率高于or. in (value1,value2,...) 或者not in (value1,value2,...) 2.between ... and ... between ...
- 【软件实施面试】MySQL和Oracle联合查询以及聚合函数面试总结
软件实施面试系列文章第二弹,MySQL和Oracle联合查询以及聚合函数的面试总结.放眼望去全是MySQL,就不能来点Oracle吗?之前面过不少公司,也做过不少笔试题,现在已经很少做笔试题了.你肚子 ...
- 【mybatis】【mysql】mybatis查询mysql,group by分组查询报错:Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column
mybatis查询mysql,group by分组查询报错:Expression #1 of SELECT list is not in GROUP BY clause and contains no ...
- MYSQL 行转列 以及基本的聚合函数count,与group by 以及distinct组合使用
在统计查询中,经常会用到count函数,这里是基础的 MYSQL 行转列 以及基本的聚合函数count,与group by 以及distinct组合使用 -- 创建表 CREATE TABLE `tb ...
- SQL分组查询及聚集函数的使用
今天要做一个查询统计功能,一开始有点犯难,上午尝试大半天才写出统计sql语句,才发现自己sql分组查询及聚集函数没学好:其实就是group by子句和几个聚集函数,熟练使用统计功能很简单.在此总结下今 ...
- MongoDB分组查询,聚合查询,以及复杂查询
准备数据 from pymongo import MongoClient import datetime client=MongoClient('mongodb://localhost:27017') ...
- mysql数据库查询和聚合函数
1.模糊查询 like % 表示多个任意字符 _ 表示任意一个字符 例如:查询黄姓同学 select * from student where name '黄%' select * from stud ...
- 18 12 06 sql 的 基本语句 查询 条件查询 逻辑运算符 模糊查询 范围查询 排序 聚合函数 分组 分页 连接查询 自关联 子查询
-- 数据的准备 -- 创建一个数据库 create database python_test charset=utf8; -- 使用一个数据库 use python_test; -- 显示使用的当前 ...
随机推荐
- 如何免费安装正版Adobe
现在正版的Adobe都非常的贵,如果你想不花钱又想下载正版的Adobe,那么就请花几分钟时间学习以下本篇博客,告诉你如何免费下载正版Adobe! [一定要读完,不要看到一半就以为教您下载的是付费版] ...
- 用pChart生成雷达图图片
需求 :由于工作需要,需要在一张背景图上添加这一张雷达图,之后图片可以在微信中长按保存.所以说我必须生成一张带有雷达图的图片第一反应是用百度echars雷达图做动态显示,之后截图.考虑到工作量和效率, ...
- JAVA对象头详解(含32位虚拟机与64位虚拟机)
为什么要学习Java对象头 学习Java对象头主要是为了解synchronized底层原理,synchronized锁升级过程,Java并发编程等. JAVA对象头 由于Java面向对象的思想,在JV ...
- 利用Turtle绘制各种图形
首先引入函数库: 第一种: import turtle import turtle as t 第二种: from turtle import * 1:使用 turtle 库的 turtle.fd() ...
- 多测师讲解rf--定位元素--高级讲师肖sir
注意点: 注意点: rfbug:rf 点击勾选一个运行就运行两个出现用例执行 注释快捷键: 改字体大小: 快捷键:显示关键字信息 (ctrl+鼠标悬浮) 注解不能空格在注解 未保存提示 定位方法 : ...
- 多测师讲解python函数 _zip_高级讲师肖sir
# zip函数 #zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象,这样做的好处是节约了不少的内存.1.使用zip讲两个列表打印出来的结果是 ...
- operator bool()是什么
operator bool()是什么 在C++中,operator TypeName()语法用来将对象转换为指定的TypeName类型,当这里TypeName为bool时,就可以直接在条件判断式里面直 ...
- ScanTailor-ScanTailor 自动矫正图像歪斜
ScanTailor 自动矫正图像歪斜 下面操作某一步可能会卡住,别担心情等待它处理完毕. New Project ... Input Directory "Browse" ...
- spring boot:thymeleaf模板中insert/include/replace三种引用fragment方式的区别(spring boot 2.3.3)
一,thymeleaf模板中insert/include/replace三种引用fragment方式的区别 insert: 把整个fragment(包括fragment的节点tag)插入到当前节点内部 ...
- spring boot: filter/interceptor/aop在获取request/method参数上的区别(spring boot 2.3.1)
一,filter/interceptor/aop在获取参数上有什么区别? 1,filter可以修改HttpServletRequest的参数(doFilter方法的功能), interceptor/a ...