从题面中四元组\((i,h_i,j,h_j)\)限制选择车子型号,不难想到这题要用\(2-SAT\)解决。

考虑转化为\(2-SAT\)模型,发现除地图\(x\)外,其他地图都只有两种车子型号可以参加,那么就把这两种型号转化为两种状态。

若\(S_i=a\),则状态为\(B\)和\(C\)。

若\(S_i=b\),则状态为\(A\)和\(C\)。

若\(S_i=c\),则状态为\(A\)和\(B\)。

然后讨论四元组的情况,设\(i\)为输入的状态,\(i^\prime\)为另一个状态。

若在第\(i\)场,\(h_i\)不可用,则不进行连边。

若在第\(i\)场,\(h_i\)可用,在第\(j\)场,\(h_j\)不可用,则从\(i\)向\(i^\prime\)连边,表示不能选\(i\)。

若两个都可用,则从\(i\)向\(j\)连边,表示若选\(i\),则一定选\(j\),同时从\(j^\prime\)向\(i^\prime\)连边,这里表示若没有选\(j\),则一定没有选\(i\)。

继续考虑如何处理地图\(x\),发现其数量\(d\leqslant8\),数据规模很小,那么我们就可以用\(dfs\)将其所有可能的情况枚举一遍,再检查是否合法。

我们只需考虑地图\(x\)等价于地图\(a\)和地图\(b\)两种情况,因为此时已经包括\(A,B,C\)三种车型了。

时间复杂度为\(O(2^d(n+m))\)。

实现细节还是蛮多的,不清楚的就看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 1000010
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,d,m,x_cnt;
bool flag;
char s[maxn],a[5],b[5],c1[maxn],c2[maxn];
int pos[maxn];
struct node
{
int x,y;
char a,b;
}t[maxn];
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
int dfn_cnt,co_cnt,top;
int dfn[maxn],low[maxn],co[maxn],st[maxn];
bool vis[maxn];
void tarjan(int x)
{
dfn[x]=low[x]=++dfn_cnt;
st[++top]=x;
vis[x]=true;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(!dfn[y])
{
tarjan(y);;
low[x]=min(low[x],low[y]);
}
else if(vis[y])
low[x]=min(low[x],dfn[y]);
}
if(low[x]==dfn[x])
{
co_cnt++;
int now;
do
{
now=st[top--];
vis[now]=false;
co[now]=co_cnt;
}while(now!=x);
}
}
bool check()
{
for(int i=1;i<=2*n;++i)
if(!dfn[i])
tarjan(i);
for(int i=1;i<=n;++i)
if(co[i]==co[i+n])
return false;
return true;
}
void clear()
{
edge_cnt=dfn_cnt=co_cnt=top=0;
memset(st,0,sizeof(st));
memset(co,0,sizeof(co));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(vis,0,sizeof(vis));
memset(head,0,sizeof(head));
}
void work()
{
clear();
for(int i=1;i<=m;++i)
{
int x=t[i].x,y=t[i].y;
char a=t[i].a,b=t[i].b;
if(s[x]==a) continue;
if(s[y]==b)
{
add(x+(a==c2[x])*n,x+(a==c1[x])*n);
continue;
}
add(x+(a==c2[x])*n,y+(b==c2[y])*n);
add(y+(b==c1[y])*n,x+(a==c1[x])*n);
}
if(check())
{
flag=true;
for(int i=1;i<=n;i++)
{
if(co[i]<co[i+n]) printf("%c",c1[i]);
else printf("%c",c2[i]);
}
}
}
void dfs(int x)
{
if(flag) return;
if(x==d+1)
{
work();
return;
}
int now=pos[x];
s[now]='A',c1[now]='B',c2[now]='C',dfs(x+1);
s[now]='B',c1[now]='A',c2[now]='C',dfs(x+1);
}
int main()
{
read(n),read(d);
scanf("%s",s+1);
for(int i=1;i<=n;++i)
{
s[i]+='A'-'a';
if(s[i]=='A') c1[i]='B',c2[i]='C';
if(s[i]=='B') c1[i]='A',c2[i]='C';
if(s[i]=='C') c1[i]='A',c2[i]='B';
if(s[i]=='X') pos[++x_cnt]=i;
}
read(m);
for(int i=1;i<=m;++i)
{
read(t[i].x),scanf("%s",a),read(t[i].y),scanf("%s",b);
t[i].a=a[0],t[i].b=b[0];
}
dfs(1);
if(!flag) printf("-1");
return 0;
}

题解 洛谷 P3825 【[NOI2017]游戏】的更多相关文章

  1. 洛谷 P3825 [NOI2017]游戏 【2-SAT+状压】

    UOJ和洛谷上能A,bzoj 8ms即WA,现在也不是知道为啥--因为我太弱了 先看数据范围发现d非常小,自然想到了状压. 所以先假装都是只能跑两种车的,这显然就是个2-SAT问题了:对于x场没有hx ...

  2. 洛谷P3825 [NOI2017]游戏(2-SAT)

    传送门 果然图论的题永远建图最麻烦……看着题解代码的建图过程真的很珂怕…… 先不考虑地图$x$,那么每一个地图都只能用两种赛车,于是我们可以用2-SAT来搞,用$i$表示这个地图能用的第一辆车,$i' ...

  3. 洛谷3825 [NOI2017]游戏 2-sat

    原文链接http://www.cnblogs.com/zhouzhendong/p/8146041.html 题目传送门 - 洛谷3825 题解 我们考虑到地图中x的个数很少,最多只有8个. 所以我们 ...

  4. P3825 [NOI2017]游戏

    题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\pri ...

  5. 洛谷 P2197 nim游戏

    洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取 ...

  6. 洛谷 P1965 转圈游戏

    洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...

  7. [Luogu P3825] [NOI2017] 游戏 (2-SAT)

    [Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候 ...

  8. 【题解】洛谷P1070 道路游戏(线性DP)

    次元传送门:洛谷P1070 思路 一开始以为要用什么玄学优化 没想到O3就可以过了 我们只需要设f[i]为到时间i时的最多金币 需要倒着推回去 即当前值可以从某个点来 那么状态转移方程为: f[i]= ...

  9. 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山

    前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...

随机推荐

  1. MySql数据库GROUP BY使用过程中的那些坑

    MySql数据库GROUP BY使用过程中的那些坑 GROUP BY 语句用于结合合计函数,根据一个或多个列对结果集进行分组. 特别注意: group by 有一个原则,就是 select 后面的所有 ...

  2. python黑帽子之tcp服务端

    试着用python创建一个标准的多线程tcp服务器 import socket import threading bind_ip = "0.0.0.0" bind_port = 8 ...

  3. SpringBoot--使用Spring Cache整合redis

    一.简介 Spring Cache是Spring对缓存的封装,适用于 EHCache.Redis.Guava等缓存技术. 二.作用 主要是可以使用注解的方式来处理缓存,例如,我们使用redis缓存时, ...

  4. Centos7上设置zookeeper自启动

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/zhouzhiwengang/artic ...

  5. DTD约束和Schema约束

    DTD约束 什么是DTD? DTD(Document Type Definition),文档类型定义,用来约束XML文档.规定XML文档中元素的名称,子元素的名称及顺序,元素的属性等. DTD约束长什 ...

  6. node-koa

    什么是koa 基于node.js 平台的下一代web开发框架 async await npm install --save koa npm install --save koa-router ctx. ...

  7. Spring Aop基于注解的实现

    一.AspectOriented Programing,面向切面编程.   AOP主要用于日志记录,性能统计,安全控制(权限控制),事务处理,异常处理等.将日志记录,性能统计,安全控制,事务处理,异常 ...

  8. 注册表写入自定义协议,网页打开exe

    新建文件:Register.reg,写入代码: Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\exe1] @="exe1 P ...

  9. 「疫期集训day7」周期

    我们成功入侵了圣康坦,屋子里到处都是面包,食物,水...现在我们的目标就在眼前----亚眠------鲁道登夫攻势中损失惨重的德国精英兵 今天考试考出了历史最低,原因在于T1签到题挂了,ull真的毒瘤 ...

  10. 创建虚拟机和安装centos7 & install oracle

    win7 x64位+VMware12+centos7 x64位+oracle 11g R2安装详解(一) 一.虚拟机安装oracle11g R2的安装环境: 1.win7 x64位          ...