>传送门<

题意:求最少需要多少个3的倍数按位或后可以得到数字a

思路:利用3的倍数对应的二进制数的性质来先选出一个x,然后根据数字a再配一个y出来

首先,我们都知道十进制中,任意一个数只要每一位相加的和能被3整除,那么这个数就能被3整除。

这是为什么?

因为十进制中每一个位都会10^k次方,那么仅仅是每一位%3的值都是余1,那么我们只要凑3个余1的,那么3就能被这个数整除。

这题思路一样,换成2进制,只要各个位置上的数mod 3后的和相加起来mod 3为0,则这个数就是3的倍数

接下来分类讨论下:

A. 如果a是3的倍数,那么我们直接取a即可

B. 如果a的二进制只有一位或两位,我们根本取不出0以外的三的倍数,所以无解。题目保证有解所以可以基本不考虑太多。

C. a的二进制位至少有三位的情况
  首先明确一些性质
  1.每一个二进制位mod 3 只能得到 1 或 2
  2.每个mod 3 = 2 的数和 mod 3 = 1的数相加 一定是三的倍数
  3.mod 3 后余数相同的数相减以后一定也是三的倍数

Ⅰ. 若a mod 3 = 1

  如果a中的二进制位有至少两个mod 3 =1的,设它们为p和q,我们取{a-p,a-q}即可。
  因为a,p 和 q 都是mod 3 = 1的,所以a-p和a-q必定是三的倍数。同时a-p和a-q等于将原本p,q处的1变成了0. 这样一来,a-p和a-q按位或之后就还是a
  举个例子: a = 19

  

  如果a中的二进制位有恰好一个mod3=1的,那么设mod3=1的这个位为p,mod3=2的某个位为q,我们取{a-p,p+q}即可。
  a-p的道理同上,p+q 因为一个mod 3 = 1,一个 mod 3 = 2 所以两者加起来一定是三的倍数,同时p+q与a-p按位与一定是a,因为a-p去掉的p p+q给补上了 多出的q是原本a中就有的所以没有什么影响。

  

   如果a中的二进制位没有mod3=1的,那么假设有三个mod3=2的位p,q,r,我们取{a-p-q,p+q+r}即可。
   因为p和q都是mod 3 = 2,所以p+q mod 3 = 1,就和 a 是一样的了 故 a-p-q是三的倍数,又因为r也是 mod 3 = 2,所以q+p+r 原本是mod 3 = 6 ,6可以除尽3,所以q+p+r 也是三的倍数

  

Ⅱ.若a mod 3 = 2

  只需把上面的讨论中1与2互换即可,是完全对称的

Code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a;
void solve()
{
scanf("%lld",&a);
vector<ll> bb[2];
for(int i=0;i<=60;i++)
if((a>>i)&1) bb[i&1].push_back(1LL<<i); //记录每一个1的位置和保存他的奇偶
if(a%3==0)
printf("1 %lld\n",a); //本身
else if(bb[1].size()+bb[0].size()<=2) return;//凑不出 (这里可能需要稍微仔细体会下)
else{
ll x,y;
int s = (a%3==2); //余数是2还是1
if(bb[s].size()){//如果原数里有我们需要的,可以直接减去的
x = a-bb[s][0];
if(bb[!s].size()) y = (bb[s][0]) + (bb[!s][0]); //凑3的两种方式
else y = a - bb[s][1];
}else{ //原数里没有余数
x = a-(bb[!s][0]+bb[!s][1]);
y = bb[!s][0]+bb[!s][1]+bb[!s][2];
}
printf("2 %lld %lld\n",x,y);
}
}
int main()
{
int T; cin>>T;
while(T--){
solve();
}
return 0;
}

参考自:
https://blog.csdn.net/sinat_40872274/article/details/97551579

https://blog.csdn.net/A_Pathfinder/article/details/97612078

(建议对着这两篇博客一起看)

2019牛客暑期多校训练营(第四场)D-triples I的更多相关文章

  1. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  2. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  3. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  4. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  5. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  6. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

  7. [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem

    链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

  8. 2019牛客暑期多校训练营(第二场)J-Subarray(思维)

    >传送门< 前言 这题我前前后后看了三遍,每次都是把网上相关的博客和通过代码认真看了再思考,然并卵,最后终于第三遍也就是现在终于看懂了,其实懂了之后发现其实没有那么难,但是的的确确需要思维 ...

  9. 2019牛客暑期多校训练营(第一场)-A (单调栈)

    题目链接:https://ac.nowcoder.com/acm/contest/881/A 题意:给定两个长度均为n的数组a和b,求最大的p使得(a1,ap)和(b1,bp)等价,等价的定义为其任意 ...

  10. 2019牛客暑期多校训练营(第一场)A - Equivalent Prefixes(单调栈)

    题意 给定两个$n$个元素的数组$a,b$,它们的前$p$个元素构成的数组是"等价"的,求$p$的最大值."等价"的意思是在其任意一个子区间内的最小值相同. $ ...

随机推荐

  1. 【MyBatis】MyBatis 延迟加载策略

    MyBatis 延迟加载策略 文章源码 什么是延迟加载 延迟加载,就是在需要用到数据时才进行加载,不需要用到数据时就不加载数据,也被成为懒加载. 好处:先从单表查询,需要时再从关联表去关联查询,大大提 ...

  2. 【Java集合】HashSet源码解析以及HashSet与HashMap的区别

    HashSet 前言 HashSet是一个不可重复且元素无序的集合.内部使用HashMap实现. 我们可以从HashSet源码的类注释中获取到如下信息: 底层基于HashMap实现,所以迭代过程中不能 ...

  3. 二进制格式 PLY 模型文件的读取与渲染

    PLY 文件头部信息: ply format binary_little_endian 1.0 comment VCGLIB generated element vertex 13469 proper ...

  4. Linux Bash Shell常用快捷键

    Linux Bash Shell常用快捷键 table { margin: auto } 快捷键 功能 tab 补全 ctrl + a 光标回到命令行首 ctrl + e 光标回到命令行尾 ctrl ...

  5. 【分布式锁的演化】终章!手撸ZK分布式锁!

    前言 这应该是分布式锁演化的最后一个章节了,相信很多小伙伴们看完这个章节之后在应对高并发的情况下,如何保证线程安全心里肯定也会有谱了.在实际的项目中也可以参考一下老猫的github上的例子,当然代码没 ...

  6. 虚拟机Linux安装Oracle容器并实现局域网其他主机访问查询

    该文涉及Docker下Oracle容器的安装,主机端口的设置实现局域网内终端均能连接上Oracle数据库,图解如下: 一.关于Docker安装oracle容器可以参考下面博文: https://blo ...

  7. nginx日志按天切割

    要求:以天为单位进行日志文件的切割,如host.access_20150915.log, 日志保留最近10天的, 超过10天的日志文件则进行删除. nginxcutlogs.sh脚本内容: #!/bi ...

  8. 【ORA】ORA-27090: Unable to reserve kernel resources for asynchronous disk I/O

    操作系统是CentOS 5.11 数据库 10.2.0.5.0 晚上查看数据库,发现数据库报错查看相关的trace文件内容如下: *** SERVICE NAME:(SYS$BACKGROUND) 2 ...

  9. Puzzle (II) UVA - 519

    题目链接: https://vjudge.net/problem/UVA-519 思路: 剪枝+回溯 这个题巧妙的是他按照表格的位置开始搜索,也就是说表格是定的,他不断用已有的图片从(0,0)开始拼到 ...

  10. 借助 AppleScript 一键打开工作空间

    我有个小毛病:同时只能在一个工程里工作. 假如让我开四五个 Webstorm,在工程里 A 改个Bug,然后又到工程 B 里加个需求,再去工程 C 发个版,切来切去一会儿就懵了. 于是有了这个项目:m ...