Problem Description
Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people visited this blog.One day, he find the visits has reached P , which is a prime number.He thinks it is a interesting fact.And he remembers that the visits had reached another prime number.He try to find out the largest prime number Q ( Q < P ) ,and get the answer of Q! Module P.But he is too busy to find out the answer. So he ask you for help. ( Q! is the product of all positive integers less than or equal to n: n! = n * (n-1) * (n-2) * (n-3) *… * 3 * 2 * 1 . For example, 4! = 4 * 3 * 2 * 1 = 24 )
 
Input
First line contains an number T(1<=T<=10) indicating the number of testcases.
Then T line follows, each contains a positive prime number P (1e9≤p≤1e14)
 
Output
For each testcase, output an integer representing the factorial of Q modulo P.
 
Sample Input
1
1000000007
 
Sample Output
328400734
 
Source
 
Recommend
chendu   |   We have carefully selected several similar problems for you:  6613 6612 6611 6610 6609 
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
#include<cmath> typedef long long ll;
using namespace std;
int prime[];
bool vis[];
int cnt =;
void erla() {
memset(vis,false,sizeof(vis));
memset(prime,,sizeof(prime));
for(int t=; t<=; t++) {
if(!vis[t]) {
prime[cnt++]=t;
}
for(int j=; j<cnt&&t*prime[j]<=; j++) {
vis[t*prime[j]]=true;
if(t%prime[j]==) {
break;
}
}
}
}
inline ll ksc(ll x,ll y,ll mod)
{
return (x*y-(ll)((long double)x/mod*y)*mod+mod)%mod;
}
ll ksm(ll x,ll y,ll mod)
{
ll ans=;
while(y)
{
if(y&)
{
ans=ksc(ans,x,mod);
}
x=ksc(x,x,mod);
y>>=;
}
return ans;
}
bool isprime(ll x)
{
for(int t=;t<cnt&&prime[t]<x;t++)
{ if(x%prime[t]==)
{
return false;
}
}
return true;
}
int main()
{
int T;
cin>>T;
erla();
while(T--)
{
ll n;
scanf("%lld",&n);
ll ans=;
for(ll t=n-;t>=;t--)
{
if(isprime(t))
{
break;
} ans=ksc(ans,ksm(t,n-,n),n);
//cout<<ans<<endl;
}
printf("%lld\n",ans); }
return ;
}

HDU-6608-Fansblog(威尔逊定理+快速乘)(多校)的更多相关文章

  1. 2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度

    题意 给定一个整数 $P$($10^9 \leq p\leq 1^{14}$),设其前一个质数为 $Q$,求 $Q!  \ \% P$. 分析 暴力...说不定好的板子能过. 根据威尔逊定理,如果 $ ...

  2. 2019杭电多校第三场hdu6608 Fansblog(威尔逊定理)

    Fansblog 题目传送门 解题思路 Q! % P = (P-1)!/(P-1)...(Q-1) % P. 因为P是质数,根据威尔逊定理,(P-1)!%P=P-1.所以答案就是(P-1)((P-1) ...

  3. hdu 2973"YAPTCHA"(威尔逊定理)

    传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...

  4. HDU 6608:Fansblog(威尔逊定理)

    Fansblog Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Subm ...

  5. HDU-6608 Fansblog(威尔逊定理+素数间隔+逆元)

    参考博客:https://blog.csdn.net/birdmanqin/article/details/97750844 题目链接:链接:http://acm.hdu.edu.cn/showpro ...

  6. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  7. HDU 5391 Zball in Tina Town【威尔逊定理】

    <题目链接> Zball in Tina Town Problem Description Tina Town is a friendly place. People there care ...

  8. HDU - 2973:YAPTCHA (威尔逊定理)

    The math department has been having problems lately. Due to immense amount of unsolicited automated ...

  9. HDU 2973 YAPTCHA (威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. 【av68676164(p55-p58)】 Intel CPU和Linux内存管理

    7.4.1 Intel CPU物理结构 https://www.cnblogs.com/megachen/p/9768115.html x86实模式 实模式 20位:1M内存空间 地址表示方式:段地址 ...

  2. for…of使用

    3.for…of使用 3.1 for…of使用 for...of 一种用于遍历数据结构的方法.它可遍历的对象包括数组,对象,字符串,set和map结构等具有iterator 接口的数据结构. 我们先来 ...

  3. HRNet

  4. 制作 macOS Sierra U盘USB启动安装盘方法教程 (亲测)

    备注:相关镜像到apple官网下载 https://discussionschinese.apple.com/thread/250596904 进去点击"请使用这个 App Store 链接 ...

  5. C#LeetCode刷题之#561-数组拆分 I(Array Partition I)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3718 访问. 给定长度为 2n 的数组, 你的任务是将这些数分成 ...

  6. golang 复数

    目录 1.声明/赋值/初始化 2.类型 3.取虚实部数值 4.运算 5.注意 跳转 1.声明/赋值/初始化 var name complex128 =complex(x,v) name := comp ...

  7. 高吞吐量消息系统—kafka

    现在基本上大数据的场景中都会有kafka的身影,那么为什么这些场景下要用kafka而不用其他传统的消息队列呢?例如rabbitmq.主要的原因是因为kafka天然的百万级TPS,以及它对接其他大数据组 ...

  8. 编写有提示的listbox控件 2008-06-29 17:13

    在MFC中几乎所有的控件都有信息提示,而惟有listbox却没有这样的一个功能,每当我们把鼠标移到listbox上控件时,啥玩意儿都没有是不是很气馁啊,所以我今天特地写了一个简单的有提示的listbo ...

  9. 土地购买 (斜率优化dp)

    土地购买 (斜率优化dp) 题目描述 农夫 \(John\) 准备扩大他的农场,他正在考虑$ N(1 \leqslant N \leqslant 50,000)$ 块长方形的土地. 每块土地的长宽满足 ...

  10. SpringBoot--- 使用SpringSecurity进行授权认证

    SpringBoot--- 使用SpringSecurity进行授权认证 前言 在未接触 SpringSecurity .Shiro 等安全认证框架之前,如果有页面权限需求需要满足,通常可以用拦截器, ...