洛谷P1198 [JSOI2008]最大数(线段树/单调栈)
题目链接:
https://www.luogu.org/problemnew/show/P1198
题目描述
现在请求你维护一个数列,要求提供以下两种操作:
1、 查询操作。
语法:Q L
功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。
限制:LL不超过当前数列的长度。(L > 0)(L>0)
2、 插入操作。
语法:A n
功能:将nn加上tt,其中tt是最近一次查询操作的答案(如果还未执行过查询操作,则t=0t=0),并将所得结果对一个固定的常数DD取模,将所得答案插入到数列的末尾。
限制:nn是整数(可能为负数)并且在长整范围内。
注意:初始时数列是空的,没有一个数。
输入输出格式
输入格式:
第一行两个整数,MM和DD,其中MM表示操作的个数(M \le 200,000)(M≤200,000),DD如上文中所述,满足(0<D<2,000,000,000)(0<D<2,000,000,000)
接下来的MM行,每行一个字符串,描述一个具体的操作。语法如上文所述。
输出格式:
对于每一个查询操作,你应该按照顺序依次输出结果,每个结果占一行。
输入输出样例
单调栈解法。因为题目求的是末尾L个数的最大值,利用两个栈分别存储最大值和最大值的位置。然后二分查找。注意二分查找时上界是总得个数减去区间长度,而不是栈的空间减去区间长度,因为不符合栈的数值已经出栈了。
单调栈解法参考自:https://www.luogu.org/blog/user38348/solution-p1198
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
long long Stack[2][200010];
long long cnt=0,top=0;
void add(long long val){
cnt++;
while(Stack[0][top]<val&&(top>0)) top--;
Stack[0][++top]=val;
Stack[1][top]=cnt;
}
long long quiry(long long L){
int l=1,r=top;
int ind=cnt-L+1;
// int ind=top-L+1;
while(l<r){
int mid=(l+r)>>1;
if(Stack[1][mid]<ind) l=mid+1;
else r=mid;
}
return Stack[0][l];
}
int main(int argc, char** argv) {
int M;long long D;
scanf("%d %lld",&M,&D);
long long t=0;
while(M--){
char c;
long long d;
cin>>c>>d;
if(c=='A'){
add((t+d)%D);
}
else if(c=='Q'){
t=quiry(d);
printf("%lld\n",t);
}
}
return 0;
}
线段树解法,维护区间的最大值。
#include <iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=200010*4;
ll Max[maxn]; void add(int p,int l,int r,int x,ll c){
if(l==r){
Max[p]=c;return;
}
int mid=(l+r)>>1;
if(x<=mid) add(p<<1,l,mid,x,c);
else add(p<<1|1,mid+1,r,x,c);
Max[p]=max(Max[p<<1],Max[p<<1|1]);
}
int quiry(int p,int l,int r,int a,int b){
if(a>r||b<l) return -1e8;
if(a<=l&&r<=b){
return Max[p];
}
int mid=(l+r)>>1;
return max(quiry(p<<1,l,mid,a,b),quiry(p<<1|1,mid+1,r,a,b));
}
int main(int argc, char** argv) {
int M,D;
scanf("%d %d",&M,&D);
fill(Max,Max+maxn,-1e8);
ll t=0;
int x=0;
while(M--){
char c;int d;
cin>>c>>d;
if(c=='A'){
x++;
ll num=(t+d)%D;
add(1,1,200010,x,num);
}else if(c=='Q'){
t=quiry(1,1,200010,x-d+1,x);
printf("%lld\n",t);
}
}
return 0;
}
洛谷P1198 [JSOI2008]最大数(线段树/单调栈)的更多相关文章
- 「线段树」「单点修改」洛谷P1198 [JSOI2008]最大数
「线段树」「单点修改」洛谷P1198 [JSOI2008]最大数 题面描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数, ...
- 洛谷 P1198 [JSOI2008]最大数
洛谷 P1198 [JSOI2008]最大数 题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. ...
- 洛谷P1198 [JSOI2008]最大数(单点修改,区间查询)
洛谷P1198 [JSOI2008]最大数 简单的线段树单点问题. 问题:读入A和Q时,按照读入一个字符会MLE,换成读入字符串就可以了. #include<bits/stdc++.h> ...
- 【题解】洛谷P1198 [JSOI2008] 最大数(线段树)
洛谷P1198:https://www.luogu.org/problemnew/show/P1198 思路 一道水水的线段树 20分钟A掉 这道题只涉及到单点修改和区间查询 所以这道题甚至不用Laz ...
- 洛谷P1198 [JSOI2008]最大数
P1198 [JSOI2008]最大数 267通过 1.2K提交 题目提供者该用户不存在 标签线段树各省省选 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 WA80的戳这QwQ BZOJ都 ...
- 洛谷 P1198 [JSOI2008]最大数——单调栈/线段树
先上一波题目 https://www.luogu.org/problem/P1198 题目要求维护后缀最大值 以及在数列的最后面添加一个数 这道题呢我们有两种做法 1.单调栈 因为只需要维护后缀最大值 ...
- 洛谷P1198 [JSOI2008]最大数(线段树)
题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制:LLL不超过当前数列的长度.(L> ...
- 洛谷P1198 [JSOI2008]最大数(BZOJ.1012 )
To 洛谷.1198 最大数 题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制:L不超过当 ...
- BZOJ——1012: [JSOI2008]最大数maxnumber || 洛谷—— P1198 [JSOI2008]最大数
http://www.lydsy.com/JudgeOnline/problem.php?id=1012|| https://www.luogu.org/problem/show?pid=1198 T ...
随机推荐
- Vue-组件化,父组件传子组件常见传值方式
前言 我们都知道vue核心之一:组件化,vue中万物皆组件,组件化我认为应该来至于模块化的设计思想,比如在模块化开发中,一个模块就是一个实现特定功能的独立的文件,有了模块我们就更方便去阅读代码,更方便 ...
- I/O方式(本章最重要)
目录 程序查询方式 程序查询方式接口结构 例题 本节回顾 程序中断方式 中断的基本概念 工作流程 中断请求 分类 中断请求标记 中断响应 判优实现 优先级设置 中断处理过程 中断隐指令 硬件向量法 中 ...
- Navicat12白嫖安装
读书人怎么能算白嫖呢 搬运链接https://my.oschina.net/ZL520/blog/3070953 链接:https://pan.baidu.com/s/1jNBO9EzTzhalMgm ...
- Eclipse的基本设置与使用
下载完eclipse后,还不能立即来写代码,需要完成一些必要的设置 设置 1.对整个工作区设置编码格式 选择菜单栏中的"Window"选项,然后选择"Preference ...
- 图解HTTP权威指南 | HTTP报文
一.问题 1.报文流是如何流动的 2.H ...
- ubuntu20部署php-swoole开发环境
第1步:安装依赖 add-apt-repository ppa:ondrej/php apt install php-dev 第2步:编译安卓swoole wget https://codeload. ...
- 版本控制比较cvs,svn,git
版本控制比较cvs,svn,git 几个重要概念: 版本库模型(Repository model):描述了多个源码版本库副本间的关系,有客户端/服务器和分布式两种模式.在客户端/服务器模式下,每一用户 ...
- springboot项目中使用jsp
在pom文件中 1.方法一 <!-- 引入tomcate内嵌的jsp解析包--> <dependency> <groupId>org.apache.tomcat.e ...
- java图像开发学习——JTable之导入数据库
package demo; import java.awt.BorderLayout; import java.awt.Container; import java.awt.event.MouseAd ...
- SpringBoot自动加载路由前缀
@RequestMapping() 将controller注册到容器中时需要加入路由地址,如果项目层数较深,地址会非常的长,并且有很多一样的路由前缀,每写一个controller都要重复一遍非常的麻烦 ...