题目描述

有N个人要去膜拜JZ,他们不知道JZ会出现在哪里,因此每个人有一个活动范围,只要JZ出现在这个范围内就能被膜拜, 伟大的JZ当然希望膜拜他的人越多越好,但是JZ不能分身,因此只能选择一个位置出现,他最多可以被多少人膜拜呢, 这个简单的问题JZ当然交给你了

输入格式

Line 1: A single integer: N (1 <= N <= 50,000)

Lines 2..N+1: Line i+1 contains two space-separated integers: A_i and B_i (1 <= A_i <= B_i; A_i <= B_i <= 1,000,000,000)

输出格式

Line 1: A single integer representing the largest number of cows whose grazing intervals can all contain the soda machine.


考虑暴力。

暴力当然是循环Ai到Bi然后把每个数都加起来啦~时间复杂度为O(N * Max(Bi))

既然是区间上的修改问题,我们可以想想线段树的做法。

每次用线段树修改Ai到Bi之间的区间的权值,然后查询1~Max(Bi)之间的最大值即可。时间复杂度为O(N * logMax(Bi))。似乎能跑得过诶。但数组根本开不下好吗?!

转变一下思路。设c[i]表示第i个位置可能有的膜拜JZ的人数,那么为了完成题目,我们需要对于每个Ai和Bi:

Ai~Bi之间的每个位置的前缀和都加一,但又不能Bi影响后面的地方。很容易想到用差分来做这题。对于每个Ai和Bi,我们可以:c[Ai]++,c[Bi+1]--。然后计算前缀和,最大的前缀和就是答案了。时间复杂度为O(N+Max(Bi))。但还是存在数组开不下的位置。

不同于之前的线段树做法,用差分做的时候就只用到了所有Ai和Bi的位置,其它地方的数组相当于浪费了。所以我们可以对所有位置离散化。那么时间复杂度就变成了可以接受的O(2 * NlogN+2 * N)≈O(NlogN)。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#define maxn 50001
using namespace std; map<int,int> mp;
int n; inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
} int main(){
n=read();
for(register int i=1;i<=n;i++){
int a=read(),b=read();
mp[a]++,mp[b+1]--;
}
int ans=0,sum=0;
for(map<int,int>::iterator it=mp.begin();it!=mp.end();it++){
sum+=(*it).second;
if(sum>ans) ans=sum;
}
cout<<ans<<endl;
return 0;
}

[usaco2010 Oct]Soda Machine的更多相关文章

  1. BZOJ 2501: [usaco2010 Oct]Soda Machine 离散+差分

    [usaco2010 Oct]Soda Machine Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 266  Solved: 182[Submit][ ...

  2. BZOJ2501: [usaco2010 Oct]Soda Machine

    n<=50000个区间,求哪个点被覆盖区间数量最多,输出这个数量. 差分模板..然而数组忘开两倍.. #include<stdio.h> #include<string.h&g ...

  3. BZOJ 2501 [usaco2010 Oct]Soda Machine

    [题意概述] 给出一个[0,1,000,000,000]的整数数轴,刚开始每个位置都为0,有n个区间加操作,最后询问数轴上最大的数是多少. [题解] 我写的是离散化后线段树维护区间最值. 其实貌似不用 ...

  4. BZOJ 2501 Soda Machine

    BIT+离散化. #include<iostream> #include<cstdio> #include<cstring> #include<algorit ...

  5. Soda Machine【差分+离散化】

    题目链接:https://ac.nowcoder.com/acm/contest/1106/A 题目大意: 1.一条长1e9的线段,每个节点都可以上色.给出n次操作,每次操作将[l, r]区间内的节点 ...

  6. bzoj usaco 金组水题题解(2.5)

    bzoj 2197: [Usaco2011 Mar]Tree Decoration 树形dp..f[i]表示处理完以i为根的子树的最小时间. 因为一个点上可以挂无数个,所以在点i上挂东西的单位花费就是 ...

  7. BZOJ-USACO被虐记

    bzoj上的usaco题目还是很好的(我被虐的很惨. 有必要总结整理一下. 1592: [Usaco2008 Feb]Making the Grade 路面修整 一开始没有想到离散化.然后离散化之后就 ...

  8. bzoj Usaco补完计划(优先级 Gold>Silver>资格赛)

    听说KPM初二暑假就补完了啊%%% 先刷Gold再刷Silver(因为目测没那么多时间刷Silver,方便以后TJ2333(雾 按AC数降序刷 ---------------------------- ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. beautiful soup 遇到class标签的值中含有空格的处理

    用Python写一个爬虫,用BeautifulSoup解析html.其中一个地方需要抓取下面两类标签:<dd class="ab " >blabla1</dd&g ...

  2. Nginx-rtmp+ FFmpeg +Docker + vue.js 直播系统搭建

    思路(如图): 1,开启推流服务器(这里我的Nginx-rtmp服务器搭建成功) 进入docker 开启推流服务器  docker run -it -p 1935:1935 -p 8000:80 -- ...

  3. Kubernetes应用管理器OpenKruise之CloneSet

    OpenKruise OpenKruise 是 Kubernetes 的一个标准扩展,它可以配合原生 Kubernetes 使用,并为管理应用容器.sidecar.镜像分发等方面提供更加强大和高效的能 ...

  4. EF Core 封装方法Expression<Func<TObject, bool>>与Func<TObject, bool>区别

    unc<TObject, bool>是委托(delegate) Expression<Func<TObject, bool>>是表达式 Expression编译后就 ...

  5. C# 将json字符串进行排序 转成键值

    public static string StortJson(string json) { var dic = JsonConvert.DeserializeObject<SortedDicti ...

  6. 论文阅读LR LIO-SAM

    Abstract 紧耦合lidar inertial里程计, 用smoothing和mapping. 1. Introduction 紧耦合lidar-inertial里程计. 紧耦合的lidar i ...

  7. ArrayList的删除姿势你都知道了吗

    引言 前几天有个读者由于看了<ArrayList哪种遍历效率最好,你真的弄明白了吗?>问了个问题普通for循环ArrayList为什么不能删除连续重复的两个元素?其实这个描述是不正确的.正 ...

  8. [Deep Learning] 神经网络编程基础 (Basics of Neural Network Programming) - 逻辑回归-梯度下降-计算图

    在神经网络中,假如有m个训练集,我们想把他们加入训练,第一个想到得就是用一个for循环来遍历训练集,从而开始训练.但是在神经网络中,我们换一个计算方法,这就是 前向传播和反向传播. 对于逻辑回归,就是 ...

  9. 访问需要HTTP Basic Authentication认证的资源的c#的实现 将账号密码放入url

    string url = ""; string usernamePassword = username + ":" + password; HttpWebReq ...

  10. CI持续集成理论知识

    (1)什么是CI What is CI? CI就是持续集成,持续集成是一种软件开发实践,即团队开发成员经常集成他们的工作,通常每个成员每天至少集成一次,也就意味着每天可能会发生多次集成.每次集成都通过 ...