BJOI2017 喷式水战改
题目链接。
Description
维护一个序列,支持操作:
- 每次在 \(P_i\) 位置后插入一段 \(X_i\) 单位的燃料,这一段有三个模式,对应的能量分别是 \(A_i, B_i, C_i\)。然后将这个序列分成四段(一段可以为空),权值分别是 \(ABCA\),最后求最大总能量。
Solution
首先我们发现一个性质,就是说一段其实在最优解下的状态是相同的,否则可以把状态价值高的蔓延到低的,会更优。
如果不考虑查询,可以把每一段看做一个大小为 \(X_i\) 的点,这个插入操作在时间复杂度能接受的范围内其实是一个平衡树的操作。因为每次插入最坏情况下会分裂一个点,所以点数最多 \(2n\)。我们可以考虑是否能在维护平衡树的时候同步维护答案。
最大总能量显然是 DP,而这道题的 DP 可以写出线性 DP和区间 DP 两种,考虑如果插入一个元素,如果是线性 \(DP\) ,这个元素后面的所有都要重新算一遍,复杂度爆炸。而区间 DP 能够满足我们的要求的。
因为平衡树满足 BST 的性质,所以每个节点的子树可以看做一段区间,每次修改,可以修改的过程同时维护每个节点所在子树区间的答案即可。
状态设计
设 \(f_{i,j}\) 为一个节点所在的子树所形成的区间,状态区间是 \([i, j]\) 所搞成的最大总能量。
初始状态
考虑每个点初始的答案。
$f_{i, j} = X_i \times $ \([i, j]\) 状态中最大的单位权值。
状态转移
考虑一段区间的合并,设左边的为 \(A.f\),右边的是 \(B.f\),答案是 \(C.f\)
有 \(C.f_{i, j} = \max(A.f_{i, k} + B.f_{k, j} )\) 。
在真正实现的时候,先让 $A = $ 左儿子, $B = $当前节点,合并后再合并右儿子即可,合并顺序不影响答案。
时间复杂度
因为每次合并的时候复杂度\(O(4 ^ 3)\),所以总复杂度 \(O(64NlogN)\)
Code
实现下来用的是 Fhq-Treap
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
const int N = 1e5 + 10;
typedef long long LL;
int n, idx, rt;
LL last = 0;
struct F{
LL w[4][4];
F(){}
F (int a, int b, int c, int v) {
memset(w, 0, sizeof w);
w[0][0] = w[3][3] = (LL)a * v, w[1][1] = (LL)b * v, w[2][2] = (LL)c * v;
for (int i = 0; i < 4; i++)
for (int j = i + 1; j < 4; j++) w[i][j] = max(w[i][j - 1], w[j][j]);
}
F operator + (const F &b) const {
F c; memset(c.w, 0, sizeof c.w);
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
for (int k = i; k <= j; k++) c.w[i][j] = max(c.w[i][j], w[i][k] + b.w[k][j]);
return c;
}
} val[N << 2], sum[N << 2];
struct T{
int l, r, rnd, sz, len, a, b, c;
LL tot;
} t[N << 2];
int getNode(int a, int b, int c, int len) {
t[++idx] = (T) { 0, 0, rand(), 1, len, a, b, c, len};
val[idx] = sum[idx] = F(a, b, c, len);
return idx;
}
void pushup(int p) {
t[p].sz = t[t[p].l].sz + t[t[p].r].sz + 1;
t[p].tot = t[t[p].l].tot + t[t[p].r].tot + t[p].len;
sum[p] = val[p];
if (t[p].l) sum[p] = sum[t[p].l] + sum[p];
if (t[p].r) sum[p] = sum[p] + sum[t[p].r];
}
int merge(int A, int B) {
if (!A || !B) return A + B;
if (t[A].rnd < t[B].rnd) {
t[A].r = merge(t[A].r, B);
pushup(A);
return A;
} else {
t[B].l = merge(A, t[B].l);
pushup(B);
return B;
}
}
// 按 tot 的 size 分裂,让 x 的 tot 总和 <= k
void split1(int p, LL k, int &x, int &y) {
if (!p) { x = y = 0; return; }
if (t[t[p].l].tot + t[p].len <= k) {
x = p;
split1(t[p].r, k - (t[t[p].l].tot + t[p].len), t[p].r, y);
} else {
y = p;
split1(t[p].l, k, x, t[p].l);
}
pushup(p);
}
// 按 size 分裂,让 x 的 sz 总和 <= k
void split2(int p, int k, int &x, int &y) {
if (!p) { x = y = 0; return; }
if (t[t[p].l].sz + 1 <= k) {
x = p;
split2(t[p].r, k - (t[t[p].l].sz + 1), t[p].r, y);
} else {
y = p;
split2(t[p].l, k, x, t[p].l);
}
pushup(p);
}
int main() {
int x, y, z;
scanf("%d", &n);
while (n--) {
LL p; int a, b, c, v; scanf("%lld%d%d%d%d", &p, &a, &b, &c, &v);
split1(rt, p, x, y); split2(y, 1, y, z);
int w = getNode(a, b, c, v), l = p - t[x].tot;
if (l) t[w].l = getNode(t[y].a, t[y].b, t[y].c, l);
if (t[y].len - l) t[w].r = getNode(t[y].a, t[y].b, t[y].c, t[y].len - l);
pushup(w);
rt = merge(x, merge(w, z));
printf("%lld\n", sum[rt].w[0][3] - last);
last = sum[rt].w[0][3];
}
return 0;
}
BJOI2017 喷式水战改的更多相关文章
- [bzoj4906][BeiJing2017]喷式水战改
来自FallDream的博客,未经允许,请勿转载,谢谢. [题目背景] 拿到了飞机的驾照(?),这样补给就不愁了 XXXX年XX月XX日 拿到了喷气机(??)的驾照,这样就飞得更快了 XXXX年XX月 ...
- [BJOI2017]魔法咒语 --- AC自动机 + 矩阵优化
bzoj 4860 LOJ2180 洛谷P3175 [BJOI2017]魔法咒语 题目描述: Chandra 是一个魔法天才. 从一岁时接受火之教会洗礼之后,Chandra 就显示出对火元素无 ...
- 6.在MVC中使用泛型仓储模式和依赖注入实现增删查改
原文链接:http://www.c-sharpcorner.com/UploadFile/3d39b4/crud-operations-using-the-generic-repository-pat ...
- Linux.NET实战手记—自己动手改泥鳅(上)
各位读者大家好,不知各位读者有否阅读在下的前一个系列<Linux.NET 学习手记>,在前一个系列中,我们从Linux中Mono的编译安装开始,到Jexus服务器的介绍,以及如何在Linu ...
- Linux.NET实战手记—自己动手改泥鳅(下)
在上回合中,我们不痛不痒的把小泥鳅的数据库从只能供在Windows下运行的Access数据库改为支持跨平台的MYSQL数据库,毫无营养的修改,本回合中,我们将把我们修改后得来的项目往Linux中部署. ...
- Android 打开方式选定后默认了改不回来?解决方法(三星s7为例)
Android 打开方式选定后默认了改不回来?解决方法(三星s7为例) 刚刚在测试东西,打开一个gif图,然后我故意选择用支付宝打开,然后...支付宝当然不支持,我觉得第二次打开它应该还会问我,没想到 ...
- 把PDF的底色改成护眼色,这样读起文章来就不是很累了······
PDF格式背景改变方法如下: 打开PDF 点击 编辑 ->首选项->辅助工具->选中"替换文档颜色"和" 自定义颜色"->将背景颜色改成 ...
- 3.EF 6.0 Code-First实现增删查改
原文链接:http://www.c-sharpcorner.com/UploadFile/3d39b4/crud-operations-using-entity-framework-5-0-code- ...
- 4.在MVC中使用仓储模式进行增删查改
原文链接:http://www.c-sharpcorner.com/UploadFile/3d39b4/crud-using-the-repository-pattern-in-mvc/ 系列目录: ...
随机推荐
- idea开发工具下,进行多个线程切换调试
- 基于Docker UI 配置ceph集群
前言 前一篇介绍了docker在命令行下面进行的ceph部署,本篇用docker的UI进行ceph的部署,目前来说市面上还没有一款能够比较简单就能直接在OS上面去部署Ceph的管理平台,这是因为OS的 ...
- zabbix自动发现的python方式数据生成
前言 zabbix里面有个功能是自动发现,比如文件系统和网卡的获取的时候,因为预先无法知道这个网卡的名称,所以就有了这个自动发现的功能,这里我是因为要用到存储池的自动发现,所以需要对数据进行生成 实现 ...
- TypeScript 引入第三方包,报无法找到模块错误
以 react-router-dom 模块为例 1. npm加上 @types/ 根据报错提示尝试安装该库的TypeScript版本 (该库的 ts 声明文件),也就是在该库的名称前加上 @types ...
- MSSQL渗透测试
mssql-getshell 来源:独自等待,知乎,github xp_cmdshell 第一种:在SQL Server 2005之前版本中,xp_cmdshell是默认开启的,因此可以直接利用,执行 ...
- Linux提权(持续更新)
利用/etc/passwd提权 个人认为,这种提权方式在现实场景中难以实现,条件太过苛刻,但是建立Linux下的隐藏账户是个不错的选择,灵感来自:https://www.hackingarticles ...
- ctf-工具-binwalk
binwalk在玩杂项时是个不可缺的工具.1.最简单的,在玩隐写时,首先可以用它来找到其中的字符串例如:在铁人三项,东北赛区个人赛中,有一道题它直接给了一个文件,没有后缀,不知道是什么文件先binwa ...
- 03python开发之流程控制
03 python开发之流程控制 目录 03 python开发之流程控制 3 流程控制 3.1 流程判断之if判断 3.1.1 代码块 3.1.2 if判断基础语法 3.1.3 案例 3.1.4 if ...
- Vegas实战——如何导入导出视频
Vegas作为一款专业的视频非编软件,在国内受到了很多用户的喜爱.小编认为,对于很多用户来说,他们选择sony vegas的一个原因是vegas在不论是从产品性能,还是使用效果上,都很容易被用户接受. ...
- Mac电脑数据被误删了怎么办,还能恢复吗
随着苹果产品的使用率越来越高,苹果电脑视频丢失的风险也是居高不下,大部分情况下都是由于误操作或者是中病毒导致视频丢失,苹果电脑视频恢复可以实现吗?涉及到文件恢复的问题,找EasyRecovery文件恢 ...