我们把\(S(i, j)j!\)看成是把\(i\)个球每次选择一些球(不能为空)扔掉,选\(j\)次后把所有球都扔掉的情况数(顺序有关)。因此\(S(i, j)j! = i![x^i](e^x - 1)^j\)

为了求出答案,我们需要研究如下的生成函数的性质。

\(P(x) = \sum_{i = 0}^{n}(2e^x - 2)^i = \sum_{i = 0}^{n} 2^i \sum_{j = 0}^{i} (-1)^{i - j}e^{jx} {i \choose j} = \sum_{j = 0}^{n} e^{jx}\sum_{i = j}^{n} 2^i(-1)^{i - j} {i \choose j}\)

令\(a_j = \sum_{i = j}^{n} (-2)^i {i \choose j}\)。在线性时间内计算\(a_j\)是个经典的问题。

则\(a_0\)是很容易计算的。

且\(j \ge 1\)时:

\(a_j\)

\(= \sum_{i = j}^{n} (-2)^i ({i - 1 \choose j} + {i - 1 \choose j - 1})\)

\(= -2\sum_{i = j}^{n - 1} (-2)^i{i \choose j} -2\sum_{i = j - 1}^{n - 1} (-2)^i{i \choose j - 1}\)

\(= -2a_j + 2(-2)^{n} {n \choose j} - 2a_{j - 1} + 2(-2)^{n} {n \choose j - 1}\)

转换为递推式\(a_j = \frac{1}{3} (2(-2)^n {n \choose j} + 2(-2)^n{n \choose j - 1} - 2a_{j - 1})\)

欲求的答案就是\(\sum_{j = 0}^{n} (-1)^ja_j \sum_{i = 0}^{n} i![x^i]e^{jx}\)

我们发现答案就是\(\sum_{i = 0}^{n} i![x^i]e^{jx} = \sum_{i = 0}^{n} j^i\),可以使用等比数列求和公式计算。

我们需要计算\(j^{n + 1}\),这可以先计算出\(j\)为素数处的取值,然后再用线性筛算出\(1 \leq j \leq n\)时的取值。复杂度变成了\(O(\frac{n}{\ln n} \cdot log_2{n}) = O(n)\)

于是,我们在\(O(n)\)的时间内做出了本题。顺便获得目前的rk1.

代码如下:

#include <bits/stdc++.h>
#define debug(x) cerr << #x << " " << (x) << endl
using namespace std; const int N = 100005;
const long long mod = 998244353ll; int n, pri[N], cnt = 0;
bool is_pri[N];
long long pw1[N], pw2[N], inv[N], binom[N], a[N], ans = 0ll; long long qpow (long long a, long long b) {
long long res = 1ll;
for (; b; b >>= 1, a = a * a % mod) {
if (b & 1) res = res * a % mod;
}
return res;
} void init () {
pw1[1] = pw2[0] = inv[1] = 1ll;
for (int i = 1; i <= max(n, 3); i++) is_pri[i] = (i != 1), pw2[i] = 2ll * (mod - pw2[i - 1]) % mod;
for (int i = 2; i <= max(n, 3); i++) {
inv[i] = (mod / i) * (mod - inv[mod % i]) % mod;
if (is_pri[i]) pw1[i] = qpow(i, n + 1), pri[cnt++] = i;
for (int j = 0; j < cnt && i * pri[j] <= n; j++) {
is_pri[i * pri[j]] = false;
pw1[i * pri[j]] = pw1[i] * pw1[pri[j]] % mod;
if (i % pri[j] == 0) break;
}
}
binom[0] = 1ll;
for (int i = 1; i <= n; i++) binom[i] = binom[i - 1] * (n - i + 1) % mod * inv[i] % mod;
} int main () {
scanf("%d", &n), init(); a[0] = 0ll;
for (int i = 0; i <= n; i++) a[0] = (a[0] + pw2[i]) % mod;
for (int i = 1; i <= n; i++) {
a[i] = pw2[n] * (binom[i] + binom[i - 1]) % mod;
a[i] = (a[i] - a[i - 1] + mod) % mod;
a[i] = 2ll * a[i] % mod * inv[3] % mod;
} for (int i = 0; i <= n; i++) {
if (!i) ans = (ans + a[i]) % mod;
else if (i == 1) ans = (ans + mod * mod - a[i] * (n + 1)) % mod;
else if (i & 1) ans = (ans + mod * mod - a[i] * (pw1[i] + mod - 1) % mod * inv[i - 1]) % mod;
else ans = (ans + a[i] * (pw1[i] + mod - 1) % mod * inv[i - 1]) % mod;
}
printf("%lld\n", ans);
return 0;
}

「TJOI / HEOI2016」求和 的一个优秀线性做法的更多相关文章

  1. loj2058 「TJOI / HEOI2016」求和 NTT

    loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...

  2. LOJ #2058「TJOI / HEOI2016」求和

    不错的推柿子题 LOJ #2058 题意:求$\sum\limits_{i=0}^n\sum\limits_{j=0}^nS(i,j)·2^j·j!$其中$ S(n,m)$是第二类斯特林数 $ Sol ...

  3. loj2058 「TJOI / HEOI2016」求和

    推柿子 第二类斯特林数的容斥表达 fft卡精度就用ntt吧qwq. #include <iostream> #include <cstdio> using namespace ...

  4. 「TJOI / HEOI2016」字符串

    「TJOI / HEOI2016」字符串 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为 \(n\) 的字符串 \(s\),和 ...

  5. loj #2055. 「TJOI / HEOI2016」排序

    #2055. 「TJOI / HEOI2016」排序   题目描述 在 2016 年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个 ...

  6. loj#2054. 「TJOI / HEOI2016」树

    题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...

  7. AC日记——#2054. 「TJOI / HEOI2016」树

    #2054. 「TJOI / HEOI2016」树 思路: 线段树: 代码: #include <cstdio> #include <cstring> #include < ...

  8. AC日记——#2057. 「TJOI / HEOI2016」游戏 LOJ

    #2057. 「TJOI / HEOI2016」游戏 思路: 最大流: 代码: #include <cstdio> #include <cstring> #include &l ...

  9. loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增

    题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...

随机推荐

  1. 378. Kth Smallest Element in a Sorted Matrix(大顶堆、小顶堆)

    Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...

  2. 《.NET 5.0 背锅案》第5集-案情大转弯:都是我们的错,让 .NET 5.0 背锅

    第1集:验证 .NET 5.0 正式版 docker 镜像问题 第2集:码中的小窟窿,背后的大坑,发现重要嫌犯 EnyimMemcachedCore 第3集-剧情反转:EnyimMemcachedCo ...

  3. openwrt——preinit.sh学习

    boot_hook_init() { local hook="${1}_hook" export -n "PI_STACK_LIST=${PI_STACK_LIST:+$ ...

  4. AHB SRAM控制器设计

  5. JAVA注解的继承性

    摘要 本文从三个方面介绍java注解的**"继承性"**: 基于元注解@Inherited,类上注解的继承性 基于类的继承,方法/属性上注解的继承性 基于接口的继承/实现,方法/属 ...

  6. 贼厉害,手撸的 SpringBoot 缓存系统,性能杠杠的!

    一.通用缓存接口 二.本地缓存 三.分布式缓存 四.缓存"及时"过期问题 五.二级缓存 缓存是最直接有效提升系统性能的手段之一.个人认为用好用对缓存是优秀程序员的必备基本素质. 本 ...

  7. html 小米商城导航栏示例

    1.小米导航栏示例 <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset=&q ...

  8. rocketmq详解-[个人版]-第一章

    一.消息队列概述 1.1.消息队列由来 在运维场景中,我们经常会存在如下场景:一旦出现S1异常,C1将因为S1的影响而异常(C为客户端,s为服务端) 当然可以通过添加多个S的方式,实现高可用.但这样会 ...

  9. Weevely使用方法以及通信流量分析

    Weevely简介 weevely项目地址:点击查看 weevely是一款针对PHP的webshell的自由软件,可用于模拟一个类似于telnet的连接shell,weevely通常用于web程序的漏 ...

  10. 装了IDM后看网页有时会自动弹出下载怎么办

    我们在安装了IDM之后,浏览一些网站时可能会自动弹文件下载窗口,但有时内容并非我们要下载的.对此类自动弹下载对话框的情况,操作者可进行自定义设置.不仅可通过设置文件格式来禁止自动弹窗,也可通过设置特定 ...